

粉体プロセスの パラダイムシフト

> ホソカワミクロン株式会社 粉体工学研究所 第3研究室 _{室長} 笹辺 修司

1. はじめに

高度情報化の波は、世界的にも時代のトレンドとなっ ている。各種ニューメディアの発達は、ビジネスのみな らず、私達の日常生活までをも根本的に変えようとする 大きなうねりとなっている。最先端の高度情報化機器を 用いることで、時間の差や空間的な距離の差を超越した ネットワーク社会が、国際的に生まれようとしている。

今日の豊かな社会は、3度の産業革命を経て築かれ たとされる。産業革命のテーマは、農業から工業、そ して情報へと歴史的に変遷してきた。言い換えると、 機械化が多くの労働力を補い、情報化は知的活動を代 替したと言える。世界はまさに知識集約型の社会構造 へと変化したのである。これらの変化は、第4次産業 革命あるいはインダストリー4.0と呼ばれている。

このインダストリー4.0は、少量多品種生産が可能な 高度にIT化されたスマート工場と流通も含めた製販ー 体の生産システムを世界共通のプラットフォーム上に 構築することを目的としたドイツの産官学共同プロジ エクトとして始まった。

これは、デジタル化によって、設計~生産~販売ま でのデータとマーケットニーズや生産プロセスのデー タをつなぎ、多品種少量生産を更に進化させた変種変 量生産に対応した柔軟で自立的な生産現場を創出する ものである。

現在の生産現場は、コツや設定といった"すり合わせ"の 塊で構成されており、そこに日本企業の強みがある。し かし、今後は製造業のデジタル化が進み、すり合わせ自 体の付加価値が相対的に減っていくことが危惧される。

従来の部分的な効率化に留まらず、製造業の全バリ ューチェーンを通じたデジタル技術のフル活用がイン ダストリー4.0の本質であり、それは質の高い膨大なデ ータが生まれる仕組みであるとも言える。

2. ビッグデータ

最近頻繁に耳にするビッグデータという言葉は、直訳 すれば [大きいデータ] であり、ボリュームが多いデー タ群という印象が強いが、それはひとつの側面を捉え ているに過ぎない。ビッグデータとは、既存の一般的 な技術では管理することが困難な大量のデータ群と定 義されるべきものである。

このように定義されるビッグデータは、比較的簡便 に収集が可能である。ここでは当社の簡単な粉砕シス テムを例に挙げて説明する。

図1に当社の分級機内蔵型微粉砕機ACMのフローを

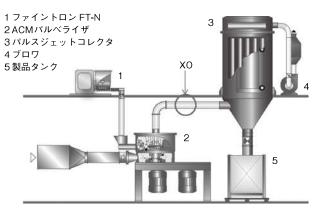


図 1 分級機構内蔵型粉砕機ACMとXOを付加したフロー

DV10	DV50	DV90	Feed	Rotor Speed	Sep. Speed	Air Flow	Time Stamp
0.71	2.09	9.06	9	4749.6	3195.1	2281.2	2017/1/12 11:10:14
0.71	2.13	9.56	9	4751.7	3187.6	2279.2	2017/1/12 11:10:18
0.71	2.13	9 <u>.</u> 24	9	4751.2	3184.2	2273.0	2017/1/12 11:10:23
0.71	2.07	8 <u>.</u> 95	9	4753.2	3185 <u>.</u> 2	2270.7	2017/1/12 11:10:28
0.71	2,11	9 <u>.</u> 19	9	4752.7	3182.3	2271.3	2017/1/12 11:10:33
0.73	2.21	7.68	9	4755.5	3185.4	2271.5	2017/1/12 11:10:38
0.72	2.14	7.86	9	4754.7	3184.5	2268.8	2017/1/12 11:10:43
0.73	2.18	8.42	9	4753.1	3198 <u>.</u> 2	2269.9	2017/1/12 11:10:48
0.72	2,11	8.76	9	4751.7	3190.6	2271.7	2017/1/12 11:10:53
0.72	2,24	9 <u>.</u> 68	9	4752.3	3189 <u>.</u> 2	2272.1	2017/1/12 11:10:58
0.71	2.08	9.24	9	4759.9	3188.5	2271.6	2017/1/12 11:11:03
0.71	2.08	8.92	9	4759.0	3200.1	2272.3	2017/1/12 11:11:08
0.71	2.08	8.79	9	4753.6	3185.6	2269.3	2017/1/12 11:11:13

表1 ACM+XOフローの代表的なデータ

示す。この図中の2粉砕機・分級機と3集塵機の配管 にオンライン式粒子径分布測定装置オプティサイザXO を設置し、粒子径分布をリアルタイム計測する。表1に、 図1のフローで得られるデータの一部を示す。

取得する主な計測データは、3種の累積粒子径、供 給速度、粉砕部回転数、分級回転数、風量の7項目で あり、これらを5秒間で平均化した値を対象とする。 そうすると、1分間に得られるデータ数量は84個とな り、これを8時間稼働した場合は約40,000個のボリュ ームとなる。しかし、実際には、データの取得は1秒 間に設定していることから、1日の稼働でこの5倍の ボリュームのデータが得られることになる。

"データ"と簡単に表現したが、それは単に存在する 情報ではなく、目的を持って計測して得られた情報が初 めてデータと呼べるものとなることがポイントである。

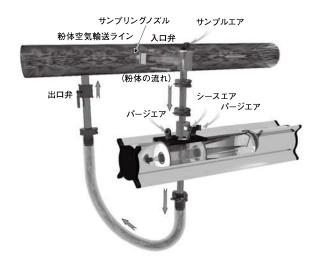


図2 オンライン粒子径分布測定装置オプティサイザXOの構造図

3. オンライン粒子径分布測定装置オプティサイザXO

当装置は、プロセスライン中を流れる粉体の粒子径分布を リアルタイムで連続的に測定し、パソコン・制御部画面上で モニタリングが可能なオンラインの粒子径分布測定装置であ る。図2に構造図を示す。本装置は、レーザ回折・散乱法を 用いて粒子径分布を測定する。エジェクタの負圧効果を利用 し、プロセスライン中に設置したサンプリングノズルから粉 体を吸引・分散し、測定セルへ導いて粒子径測定を行う。測 定後の粉体は再びプロセスライン中に戻されるため、製品ロ スがない。測定した粒子径データはパソコンに送られ、専用 ソフトで解析・表示される。更に解析データを外部出力する ことで、プロセスラインへのフィードバック制御も可能であ る。本体はレーザ発振部と検出部が一体の構造となってお り、測定セルの脱着による光軸への影響がないため、測定セ ルの清掃や交換が容易にできる。独自のエア洗浄方式を採用 し、パージエア、シースエア及びセルフクリーニングエアに よって粉体が測定セルに付着しにくい構造となっている。ま た、リアルタイムでモニタリングを行うことで、プロセスラ インの最適化による製造能力及び品質の最適化やエネルギー コストの削減が比較的安価なイニシャルコストで実現できる。

4.現在の制御の限界

本社(大阪府枚方市)と東京支店(千葉県柏市)のテスト センターでは、国内外のお客様から寄せられる要望につい て、毎日10件程度の材料加工テストを行っている。粒子 設計と呼ばれる粒子の複合化や形状制御を目的とする加工

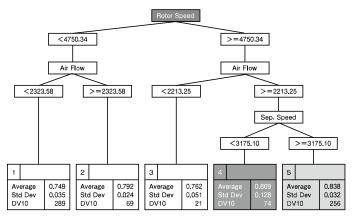


図3 XpertRule によるACM粉砕条件のデータマイングの決定木結果

以外は、目標とされる粒子径に対し、最大能力の追及がテ スト内容の大半を占める。

粉体プロセスの制御は、ある一定範囲の許容粒子径域(上限/下限)を目的に実施する場合、対象となる目標の粒子 径はひとつとなる。しかし、この目標に加えて、処理能力 や消費エネルギー効率の向上、あるいはこれら2つのバラ ンスをとった条件での運転を行うことは、パラメータが多 いことや条件間の関係性が定量的に掴めないことから、人 間では理解不能に陥る。また、数値化できない条件のため、 多変量解析も利用できない。

このように制御の限界に関する課題に対し、ビッグデー タの解析技術の活用が注目されている。

5. XpertRule

ビッグデータの解析技術は、「クロス集計」「ロジスティッ ク回帰分析」「決定木分析」「アソシエーション分析」「クラス ター分析」など、様々な方法が提案されている。

当社の英国子会社Hosokawa Micron Ltd.と英国 XpertRule社では、XpertRule社のデータマイング機能を 備えた制御ソフトウェアによる粉体プロセス制御の検討 を始めている。

本技術は、主に決定木分析 (Decision Tree Analysis)、 遺伝的アルゴリズム、ファジー化の組み合わせで構成されている。

決定木分析は、樹木状のモデルを使って要因を分析し、 その分析結果から境界線を探して予測を行うデータマイ ニング手法のひとつである。

図3に当社の分級機内蔵型微粉砕機ACMで重質炭酸カ ルシウムを粉砕した際の目標とする粒子径d10は、どのパ ラメータで決定されるかをXpertRuleで解析した結果を示す。

最も重要なバラメータは、粉砕ロータ回転数で4,750rpm が最適値である。以降、風量、分級ロータ回転速度の順と なる。その条件下の粒子径と標準偏差の計算結果を示し、 使用されたデータ数量も表示される。

ここで使用されるデータは総数の1/2~1/3であり、使 用されなかったデータは解析後のシミュレーション用途に 用いられる。

一方、図3の結果にある粉砕ロータの回転数を制御する 場合、4,750.34rpmより1rpmでもずれると制御プログラ ムが動作してしまうことが課題として残る。これは、プロ セス制御であるマニュアル制御、PID(Proportional Integral Derivative)制御などに共通する問題である。

本技術は、過敏に反応しすぎてシステムが不安定になる のを回避するため、決定木における各枝の数値に対して、 ある程度の幅(マージン)を持たせる作業をプログラムが自 動的に行い、決定木のファジー化を実施している。

このように目的とする粒子サイズの処理に加え、処理量の 向上、消費エネルギーの低減など、複数の条件を満たす運 転条件の計算は、一般的なアルゴリズムによってファジー化 された決定木を組み合わせることで実現している。また、 各パラメータに重み付けを設定することも可能である。

6. おわりに

本稿では、粒子径と高い生産性(処理量)あるいは低い 消費エネルギーを両立する現在開発中の下記の取り組みを 紹介した。

① 各種センシングによるビッグデータの構築

- ② 運転条件のルール化
- ③ 安定制御のための前処理

④ 遺伝的アルゴリズムによる決定木の組み合わせ

また、センシングするデータ種類を増やすことで、シス テムの予知保全やお客様のより高度な要求にも応えられる 粉体処理装置の開発の可能性があると考えている。

更に粒子径を対象とした粉体設計に、当社グループが持 つ粉体評価技術を融合させることで、従来の概念を覆す粉 体特性を制御した製品作りを図っていきたい。今後ますま す多様化するであろうお客様の新製品に最適な粉体加工を 可能にする粉体プロセスのパラダイムシフトに向け、早期 のサービス提供を目指す所存である。