特集Ⅱ/先端から基盤までを支える粉体工学の進歩

液中微粒子分散制御によるセラミックス材料の組織設計と 新材料への応用 ~液中帯電粒子の電気泳動現象を利用したセラミックス製膜技術 「電気泳動堆積プロセス」とそのSOFCへの適用を例に~ Microstructure Design of Ceramics by Controlling the Dispersion of Fine Particles in a Liquid, and the Application of the Design Technique to Fabricate Novel Materials.

—The Fabrication Process of Ceramic Layers Using Electrophoretic Phenomenon of Surface-Charged Colloidal Particles, "Electrophoretic Deposition", and Example of the Application of the Process for SOFC—

打越 哲郎

Tetsuo UCHIKOSHI

(独)物質・材料研究機構 微粒子工学グループFine particles engineering group, National Institute for Materials Science

Abstract

Electrophoretic deposition (EPD) is a colloidal process wherein ceramic bodies are directly shaped from a stable colloid suspension by a dc electric field. Compared to other advanced shaping techniques, the EPD process is very versatile since it can be modified easily for a specific application. The EPD is also gaining increasing interest as a processing technique for production of novel inorganic nanostructured and nanoscale materials. In this paper, the deposition mechanism of the EPD process and its application on SOFC is introduced.

1. はじめに

直径が10⁻⁷~10⁻⁹m 程度の大きさの粒子が気体や液体に分散している状態をコロイドという。一般に,液中のコロイド粒子は,溶質の分子やイオンより大きく,常に帯電しているため,ブラウン運動,チンダル現象,透析,電気泳動などの特有な性質や凝析や塩析などの現象を示す。サブミクロン~ナノサイズのセラミックスの粒子も,水や非水溶媒などの液体に分散するとコロイド粒子と全く同じ性質を示し,液中で帯電,分散したセラミックス粒子を適当な方法で凝集させると緻密な固化成形体を得ることができる。このような成形法はコロイドプロセスと呼ばれ,複雑形状のセラミックス製品を製造する方法として利用されてきた。

液中帯電粒子の電気泳動現象を利用したセラミック ス製膜技術である Electrophoretic Deposition (EPD) は、コロイドプロセスの1つとして位置づけられ、原 料粉のサスペンションに電場を印加し粒子をその表面 電荷と正負の異なる電極方向に電気泳動させて、基材 上に粒子堆積層を形成させる固化成形法である。電気 泳動堆積法,泳動電着法または単に電気泳動法などと も呼ばれ、比較的均一な粒子堆積膜が低コストかつ短 時間で得られる簡便な方法として注目されている。基 材は、金属やグラファイトなどの導電性材料を用いて 電極と兼用するのが一般的ではあるが、実際には必ず しも導電性材料である必要は無く、電極直前に非接触 で置かれた非導電性多孔質材料も代用できる。本稿で は、電気泳動プロセスの概略を解説し、SOFCのセル 構築プロセスへの応用について紹介する。

2. 電気泳動プロセスの動力学

電場の印加されたサスペンション内での粒子および イオンの泳動と堆積の様子を図1に示す。電気二重層 を従えた粒子は溶媒中を泳動し,基板に到達すると電 気二重層を徐々に喪失して凝集,堆積する。この間, 粒子は電場の作用により基板に押し付けられた状態と なっている。反発ポテンシャルの低下があまり起こら ない場合には凝集力が弱く,低密度の成形体しか得ら れないことや,通電を止めると粒子が基板から滑り落 ちることもある。

図1 サスペンション中のイオンおよび粒子の泳動と 堆積

Hamaker のマスバランス則によれば, 電気泳動プ ロセスによる粒子堆積量 *W*(g)は, 以下の式で示され る¹⁾。

$$\frac{dW}{dt} = f\mu CES \tag{1}$$

ここで、tは堆積時間 (s)、 μ は電気泳動度 (m²V⁻¹s⁻¹)、 Eは電位勾配 (V/m) Cはサスペンションの固相量 (g/m³)、Sは電極面積 (m²)、fは基板到達粒子の付 着確率 ($0 \le f \le 1$) である。粒子堆積過程で電位勾 配Eは変化し、回路の電流I(A) とサスペンション の電導度 Λ (S/m) に以下の式が成り立つ。

$$E = \frac{I}{S\Lambda}$$
(2)

また,回路に印加されるポテンシャル V_aは,アノードおよびカソードでの電位降下,サスペンションおよび固化層でのオーム損により消費されるので,これらの間に次式が成り立つ。

$$V_a = \Delta \phi_{anode} + IR_{sus}(d - d_s) + IR_s d_s + \Delta \phi_{cathode} \quad (3)$$

ここで、 $\Delta \phi_{anode}$ および $\Delta \phi_{cathode}$ は、それぞれ、アノードおよびカソードでのポテンシャル降下、 R_{sus} および R_s は、それぞれ、サスペンションおよび固化層の見かけ抵抗(Ω/m)、 dおよび d_sは、それぞれ、電極間距離および固化層厚さである。定電圧モードで電気泳動堆積を行なう場合、回路の電流をモニターしそれが時間と共に減少していれば、IR 降下が生じていること、すなわち粒子の堆積が進行していることを間接的に確認できる。定電流モードでは、時間に対する電圧の増加で粒子の堆積を確認できる。

3. 電気泳動プロセスにおける粒子固化機構

電極基板上への粒子の堆積が,いわゆる DLVO 理 論に基づく van der Waals 力による粒子の凝集である と仮定すると、粒子のチャージを急激に失わせ静電反 発ポテンシャルが低下させる何らかの作用が電極上で 起こっていることになる。我々は、この原因を調査す るため、通電時における正極および負極に接する場所 のスラリーを一定時間おきにマイクロピペットでごく 少量採取し、イオン感応型電界効果トランジスタ (Ion-Sensitive Field-Effect Transistor, IS-FET) 型 の pH メーターで測定した。すると、負極および正極 の直前のサスペンションの pH が,通電時にそれぞ れ,高 pH 側および低 pH 側へ大きく偏倚する様子が 観察された。例えば、pH4.5に調整したアルミナサス ペンションの場合、通電時の負極直前の pH は10付近 まで上昇していた。このような pH 変化は、粒子を含 まない純粋な溶媒でも観察されたことから、いわゆる 電極反応によるものと考えられた^{2,3)}。

ここで、電気泳動プロセスにおける電場の役割についてもう一度考えてみる。電場には、(1)スラリー中 で帯電した粒子を電気泳動させる。(2)電極基板に到 達後、まだ電荷を失っていない帯電粒子を電場の力 F=qE で押し付ける。(3)電極基板近傍のpHを大き く変化させる。の3つの役割がある。特に、電極近傍 のpH が粒子の等電点に近い状態にシフトしているこ とが、粒子の堆積に重要である。pH ローカリゼーシ ョンの測定結果に基づき提案された粒子固化機構を 図2に模式的に示す。通電により電極方向に泳動して きた帯電粒子は、通電によりpH が粒子の等電点付近 へと変化している電極直前のpH 変化域に突入する。

図 2 電場による3つの作用(図左)と pH ローカリゼ ーションモデルによる粒子固化の模式図(図右)

そして,急速に電荷を失って凝集,堆積する。粒子が 泳動するが堆積しないケースでは,電極近傍のpHと 粒子の等電点のマッチングが悪いことが考えられえ る。そのような場合,適当な高分子電解質で粒子を修 飾し等電点をシフトさせることが有効であることが, 我々の実験で確認された。このように,電気泳動プロ セスにおける印加電場は,電気により帯電粒子をマニ ユピレーションすることだけでなく,電極近傍pHの 変化により電極上に粒子を凝集・堆積させることにも 極めて有効に作用していることが明らかとなった。

4. 粒子固化成形技術としての電気泳動プロ セス

電気泳動プロセスは、ドライプロセスと比較して高 密度の成形体が容易に得られる。図3は、ジルコニア (3 Y-SZ) ナノ粒子を100 MPaで一軸加圧(UP)し た成形体、さらにそれを200 MPaまたは400 MPaで 等方静水圧プレス(CIP)した成形体と、電気泳動堆 積で作製した成形体について、大気中における焼結挙 動を比較したものである⁴⁾。電気泳動堆積で作製した 成形体は、400 MPaのCIP成形体には及ばないもの の、200 MPaのCIP成形体に匹敵するかそれ以上の 焼結性を示している。また、粒子間の空隙を溶媒が移 動する鋳込み成形法では、微粒子ほど粒子間の空隙は 小さくなり成形速度は低下するが、粒子自身が移動す る電気泳動プロセスでは、固化速度は粒径に依存せず 極めて速いため、特にナノ粒子の成形に適した方法と もいえる。また、テープ成形法に比べ、密着度が良く 厚さの制御された積層体の作製にも適している⁵⁾。

電場を用いる大きな利点は、液中で帯電した粒子が 電極間の最短距離を直線的に泳動するわけではなく、 溶媒で満たされた空間を電位勾配に従って泳動、堆積 することにある。図4に、円筒形2電極間の電気力線 と粒子の泳動の様子を模式図で示す。電極間を電気力 線に沿って泳動した粒子は電極の裏側にも回り込むた め、蒸着やスパッタリングなどの製膜法と異なり、曲 面や凹凸を持つ基材表面にも比較的均一な粒子堆積膜 の形成が容易にできる。この特徴を積極的に利用する と、電極の極性と空間的配置を工夫し、電場のポテン シャルを3次元的に制御することにより、基材上の特 定場所に粒子を導き堆積させることも可能である。こ

図3 ジルコニアナノ粒子の焼結密度に及ぼす成形 法の違い

図4 円筒形2電極間の電気力線と粒子の泳動

うした電場の精密制御による粒子アセンブリングは、 電気泳動プロセスの大きなメリットの1つとも言え る。

5. サスペンションの調製

通常のコロイドプロセスでは、コスト、環境への負 荷の低減や分散・凝集制御の容易さから、水系溶媒が 多く用いられている。電気泳動プロセスにおける水系 溶媒の利用も可能であるが、溶媒の電気分解で発生す るガスによる堆積体の多孔化を避ける工夫が必要であ り、多くの場合で非水溶媒が選択されている。前述の 通り、電気泳動プロセスでは、粒子表面を液中で正ま た負に帯電させる必要がある。溶媒中に粒子を投入、

撹拌するだけでゼータ電位の高い安定したサスペンシ ョンが調製できる系もあるが,一般には,粉体を溶媒 に投入後,適量の酸,アルカリ,あるいはアミノ基や カルボキシル基などの官能基を側鎖に持つ高分子電解 質を添加して,正または負のチャージを与える必要が ある。溶媒中のセラミックス粒子は,多くの場合,そ の表面に水酸基を吸着しており,酸またはアルカリを 添加すると表面水酸基へのプロトンの付加または引き 抜き反応が次式のように起こる。このため,粒子表面 は正または負に帯電する。

 $(M - OH) + H^+ \leftrightarrow (M - OH_2)^+$ (酸性側) (4) (M - OH) + OH ↔ (M - O)^- + H_2O (塩基性側) (5)

また,高分子電解質は溶媒中で粒子表面に吸着し,そ の側鎖が官能基の性質に応じて正または負に帯電す る。そのため,高分子電解質で包まれた粒子は,全体 としてみれば,官能基の性質に応じた表面帯電性を示 すと見做すことができる。酸またはアルカリや高分子 電解質は,粒子の電気泳動に必要な正または負のチャ ージを粒子表面に与える効果がある一方で,過剰に添 加されると未吸着のイオンが電気二重層を圧縮しサス ペンションの分散性を悪化させる。さらに,液中の余 剰イオンが通電時における溶媒中の電荷の主キャリア となり,帯電粒子の輸率を著しく低下させる。このた め,長時間通電しても「付かない」「厚膜にならない」 などの問題を起こすことがある。

電気泳動プロセスで多く用いられるのが,2,4ペン タンジオン(アセチルアセトン)や MEK などのケト ン溶媒,または2-プロパノール(IPA)やエタノー ルなどのアルコール溶媒に、ヨウ素を添加する系であ る。これは、これら有機溶媒とヨウ素の反応により生 じるプロトン H⁺が、酸を添加した場合と同様に粒子 表面を正に帯電させる効果を利用している。また、 2,4ペンタンジオンと 2 - プロパノールの混合系は、両 者の混合比の調整だけで粒子分散制御の可能な分散媒 である⁶⁾。

サスペンションの質的評価にはゼータ電位の測定が 不可欠であるが,簡便なサスペンション評価法とし て,酸性度および電気伝導度の測定が有効である。水 系溶媒における酸性度は,一般に水素イオン濃度指数 pH = -log[H+]で表されるが,非水溶媒でも完全な無 水でなく水を混和しやすいもの,例えば低級アルコー ルやケトンなどであれば,通常のpH電極を用いた簡 便な評価が可能である。非水溶媒の酸性度は,水素イ オン濃度を水素イオンの活量 aH と置き換えた次式で 定義される⁷⁾。

$$pa_H = -\log a_H \tag{6}$$

 $\mu_{\rm H} = \mu_{\rm H}^{\circ} + \mathrm{RT} \ln a_{\rm H} \tag{7}$

水系溶媒用に校正された通常のpH電極(KCl電解液) で非水溶媒の酸性度を測定した場合, pHメーターの 読み値 pH_{op}(operational pH)と $a_{\rm H}$ の間に以下の関係 が成り立つ。

$$pH_{op} - pa_{H} = \frac{\Delta E_{j}}{\left(\frac{RT\ln 10}{F}\right)} \tag{8}$$

あるいは,

$$pH_{op} - pa_{H} = \frac{\Delta E_{j}}{0.05916}$$
 at 25 °C (9)

ここで, ΔE_iは残留液絡ポテンシャル, R はモル当り の気体定数, F はファラデー定数である。溶媒がエタ ノールの場合では, 以下の式で示される。

 $pa_H = pH_{op} + 1.23$ (10)

pH 測定は、サスペンションの評価に有効な情報を示 すので、溶媒が非水系の場合でも測定すべきデータで ある。但し、完全な無水溶媒では、測定電極のガラス 膜が脱水されインピーダンスが上昇するため、正確な 測定信号が得られない。

電気伝導度は、溶媒中のイオン濃度を示す指標であ り、サスペンションに添加する酸やアルカリ、分散剤 の添加量が粒子表面への飽和吸着量を超えると急激に 増大する。図5にエタノールに分散したアルミナサス ペンションに酸性リン酸エステルを添加したときの pH_{op}, 電気伝導度とゼータ電位の変化を示す。酸の添 加量が少ない時, pH_{op}の低下に伴う電気伝導度の変 化は小さいが, 吸着量の飽和とともに電気伝導度は上 昇する⁸⁾。これらの変化はゼータ電位の最大値とよく 対応している。前述のように, 電気泳動プロセスには 余剰イオンの出来るだけ少ない状態が好ましく, 粒子 がうまく堆積しない場合, サスペンションの電気伝導 度が上昇しすぎていないか, 確認が必要である。

図5 アルミナーエタノール系サスペンションの pH_{op}, 電気伝導度, ゼータ電位に及ぼすリン酸 エステルの添加量。PE-1:エチルアシッドフ ォスフェート, PE-2:ブチルアシッドフォス フェート, PE-3:ブトキシエチルアシッドフ ォスフェート。pure solvent はアルミナ粒子が 存在しないエタノール溶媒の場合

乾燥時の割れを防止する目的で,サスペンションへのバインダーの添加が必要なケースも少なくない。例 えば,水系溶媒ではポリビニルアルコール (PVA), 非水溶媒ではポリビニルブチラール (PVB) など が,ごく一般的に用いられている。

6. SOFCへの電気泳動プロセスの適用

電気泳動プロセスは,簡便な装置で堆積体の膜厚や 微細構造などが制御でき,SOFCのセル構築にもしば しば適用される。その際,セルの形状(平板,円筒) や作製する部材(電解質,燃料極,空気極)により, 基材との導通の取り方を含めた電極配置に工夫が必要 であり,特に,電気伝導性を有しない材料上に堆積膜 を形成する際の導通の取り方には様々な工夫が取られ ている。

例えば Nakavama らは、NiO-SDC 上への SDC 膜 の形成において、NiO, SDC, carbon, PVA を混 合、プレス成形した電極を基材として用い、SDC を 堆積後に電解質膜と基材を共焼結している⁹⁾。この場 合,成形基材に伝導性付与材料のカーボンだけでな く、焼結後の電極基材側の多孔性の確保を考慮した PVA が添加されている。この他に、電極材基材上に グラファイトを直接塗布する方法や、 グラファイト成 形電極上に堆積させる方法も多く用いられるが、グラ ファイト表面の不活性さから堆積物の付着力が弱く. またグラファイトの消失温度が比較的高いため、乾燥 時や焼成時にひび割れや剥離を生じることもある。 Matsuda らは900℃で予備焼成した多孔質 NiO-YSZ の背面にグラファイト層をスプレーコートし、非導電 性の NiO-YSZ 側に YSZ を堆積後1400℃で共焼結す る方法で、多孔質 NiO - YSZ 上へ緻密な YSZ 膜の 形成を行なっている。この場合、基材の予備焼成温度 を低めに設定し、共焼成時に基材も同時収縮するよう にして、膜の密着性が図られている¹⁰⁾。

我々のグループでは、図6に示すように、NiO-YSZ多孔質材表面を薄く均一なポリピロール(導電 性高分子)の連続膜で被覆し、ポリピロール膜上に電 解質膜を直接堆積後に共焼結する方法を用いている¹¹⁾。

図の右側には、1000℃で予備焼成した NiO-YSZ 多 孔質基材表面にポリピーロールを被覆し、その後 GDC, LSGM, GDC の 3 層を電気泳動プロセスで堆 積, さらに1400℃で共焼成した組織の断面 SEM 写真

図 6 (左) 化学重合法による NiO-YSZ 基材表面へのポリピロール膜被覆手順 (右)多孔質NiO-YSZ上に形成されたGDC/LSGM/GDCの3層膜(1400℃焼成後)

を示している。ポリピロールは、化学重合させる温度 によって導電率や膜厚形成が変化し、緻密体から多孔 質体までいろいろな表面に被覆可能である。また、ポ リピロールの焼失温度(<500℃)は粒子間のネッキ ング開始温度よりも低く、密着性の優れた膜を得やす い利点がある¹²⁾。

この他に、電極材上に積層膜を堆積させ、乾燥後に この電極から剥離して自立膜として焼成する方法もあ る。例えば、Cherng らは ϕ 100mm の銅線上に NiO-YSZ、YSZ、LSM の3層を堆積させ、乾燥後に銅線 を抜き焼成を行なって円筒形のセルを構築している ¹³⁾。

7. おわりに

多くの機能材料,構造材料の応用分野で,理論通り の特性を引き出せる組織に至るには,プロセスの高度 化が非常に重要である。液中帯電粒子を電場を用いて 操つる電気泳動プロセスは,セラミックス材料の高機 能化,多機能化のための低コストで汎用性が高い組織 微構造制御法として,様々な分野で一層の利用が期待 されている。我々のグループでは,超伝導マグネット の発生する強磁場中で電気泳動堆積を行なうことによ り,材料の結晶磁気異方性を利用した配向制御を行な いつつ粒子が堆積された配向積層コンポジットの作製 研究にも注力している^{14,15)}。なお,電気泳動プロセス の理論やその他の応用例については,比較的多くの論 文が紹介されている文献7,16-18のレビューを参照さ れたい。

参考文献

- S. Put, J. Vleugels and O. Van der Biest, Acta Mater., 51, 6303 (2003).
- L. Besra, T. Uchikoshi, T. S. Suzuki and Y. Sakka, J. Eur. Ceram. Soc., 30, 1187 (2010).
- 3) M. Mishra, S. Bhattacharjee, L. Besra, H. S. Sharma, T. Uchikoshi and Y. Sakka, J. Eur. Ceram. Soc., 30, 2467 (2010).
- 4) 打越哲郎, 鈴木達, セラミックス, 45, 88 (2010).
- 5) 打越哲郎, J. Soc. Inorg. Mater. Jpn., 8, 478 (2001).
- 6) M. Kawakita, T. Uchikoshi, J. Kawakita and Y. Sakka, J. Am. Ceram. Soc., 92, 984 (2009).
- 7) P. Sarkar and P. S. Nicholson, J. Am. Ceram. Soc., 79, 1987 (1996).
- 8) 打越哲郎, 鈴木達, 古海誓一, 三木理子, 目義雄, Materials Integration, 20, 82 (2007).
- S. Nakayama and M. Miyayama, Key Eng. Mater. 350, 175-178 (2007).
- M. Matsuda, T. Hosomi, K. Murata, T. Fukui and M. Miyake, Electrochem. Solid-State Lett. 8, A 8 (2005).
- T. Uchikoshi, S. Furumi, N. Shirahata, T. S. Suzuki and Y. Sakka, J. Am. Ceram. Soc., 91, 1674 (2008).
- 12) H. T. Suzuki, T. Uchikoshi, K. Kobayashi, T. S. Suzuki, T. Sugiyama, K. Furuya, M. Matsuda, Y. Sakka and F. Munakata, J. Ceram. Soc. Jpn., 117, 1246 (2009).
- 13) J.S.Cherng, M.Y.Ho, T.H.Yeh and W.H.Chen,

Ceram.Int., 38S, S477 (2012).

- 14) 打越哲郎, 鈴木達, 日義雄, 堀井滋, 粉体と工業, 38, 63 (2006).
- (2009).
 (2009).
- O. Van der Biest, and L. J. Vandeperre: Annual Rev. Mater. Sci., 29, 327 (1999).
- I. Zhitomirsky: Adv. Colloid Interface Sci., 97, 279 (2002).
- A. R. Boccaccini and I. Zhitomirsky: Current Opinion in Solid State & Mater. Sci., 6, 251 (2002).
- 19) Y. Fukada, N. Nagarajan, W. Mekky, Y. Bao, H.-S. Kim and P. S. Nicholson: J. Mater. Sci., **39**, 787 (2004).

Captions

- Fig. 1 Migration of the particles and ions during the electrophoretic deposition
- Fig. 2 Three rolls of the electric field applied to the system (left) and the schematic diagram

showing the deposition mechanism by the EPD process (right)

- Fig. 3 Sintering characteristics of the 3 mol% yttria-stabilized zirconia compacts consolidated by different methods: uniaxial pressing (UP), cold isostatic pressing (CIP) and electrophoretic deposition (EPD)
- Fig. 4 Electric field lines between the two cylindrical electrodes, and electrophoresis of the colloidal particles
- Fig. 5 Effect of the addition of phosphate ester on the operational pH, electric conductivity and zeta potential of an alumina-ethanol system: PE-1: ethyl acid phosphate, PE-2: butyl acid phosphate, PE-3: butoxyethyl acid phosphate
- Fig. 6 (Left) Schematic illustration showing the coating process of polypyrrole on a nonconducting ceramic substrate. (Right) GDC/LSGM/GDC tri layers fabricated on a polypyrrole-coated porous NiO-YSZ by the sequential EPD process