特集/ナノパーティクルテクノロジーの構築と実用化への展開

ナノ粒子の塗布、乾燥による構造制御 Coating, Drying, and Microstructuring of Suspensions

山村 方人 Masato YAMAMURA

九州工業大学 Kyushu Institute of Technology

Abstract

Coating is generally defined as a process to replace air on a solid substrate by a liquid. However, recent development in coating technologies have shed light on self-organization and micro- structuring in evaporating complex thin fluids. In this article, some examples on structure formation in coating/drying processes are introduced, which include (i) particle-induced stabilization of a air film intruding between a moving solid and a liquid, (ii) drying induced segregation of particles and other components, and (iii) flow-induced surface roughening at air-liquid interface. The effect of operating parameters on the dynamic behavior at interfaces and in bulk liquid is also emphasized.

1. はじめに

ウェットコーティングは「固体基材上のガスを液体 で置換する技術」から「液膜内に新しい界面を作製す る技術」へと大きく転換している。ガス – 液一基材 (固体)3相接触線は力学的な特異点であり,そこで の高速分子置換に着目した前者は学術的に興味深い 様々な問題を提供する。しかし最近はむしろ,液膜を 乾燥固化させる際に内部に生じる様々な微細界面構造 に注目した後者の検討が盛んである。均一溶液系を出 発点として界面構造を大面積で作製できることは塗布 技術のユニークな点と言える。

中でもナノ粒子分散液は, 膜厚方向の局所粒子分布 や, 気液(液々, 固液)界面における面内粒子配列に よってしばしば最終製品の機能が決定されるため, 界 面形成過程の理解が重要な系の一つである。実際に機 能紙, 印刷, カラー鋼板, 粘着フィルム, 光学フィル ム, バリアフィルム, メディカルフィルムなど様々な ナノ粒子分散系製品の製造に塗布技術が用いられる。 こうした製品に要求される機能は透過性, 光反射性, 分子選択性, 光反応性, バリア性, 電気伝導性, 剛 性,屈曲性,定着性など多彩である。例えば表面凹凸 を数10nm以下に抑えた高平滑フィルムがある一方 で、ミクロンスケールの凹凸を意図的に作製して防眩 機能を付与した光学フィルムもある。更に導電性と透 明性、光反射性と物質透過性など複数の機能が共存す る製品では,ある特定のプロセス条件でのみ望ましい 界面構造を発現する場合も多い。最近では高粒子(固 形分)濃度の溶液をより薄く塗布し乾燥負荷を低減す る技術のみならず,基材のパターニング技術とガス相 局所濃度制御(drying lithography)を組み合わせる ことで,粒子の分布や配列状態を能動的に変化させる 技術が要求されている。

ここでは一般的な塗布方式について概説したのち、 (i) 粒子による接触線不安定現象の抑制,(ii) 高速乾燥に伴う膜厚方向の成分偏析および(iii) 気液界面での流動誘起凹凸形成に関する事例を紹介する。

2. 塗布方式

走行する基材への roll-to-roll 塗布に対象を限定しても,現実に用いられる操作条件は非常に広い。基材

速度は業種や製品によって異なるが数m / 分から千m / 分に及ぶ。塗布液としてせん断粘度が水にほぼ等し い希薄ナノ粒子分散液が用いられる一方で、粘度が数 万 Pa·s を超える無溶剤光硬化性液もある。前者では その高い流動性のため表面張力対流による凹凸欠陥が 顕在化し易く、また後者では畝状欠陥や気泡同伴等の 界面不安定現象が発生しやすい。こうした広い操作条 件下で安定塗布を実現するために、異なる様々な塗布 方式が存在する。一般にウェットコーティングの方式 は、液膜に外力を与えて過剰液を除去し所定の塗布膜 厚を得る後計量塗布 (post-metered coating) と、単 位塗布幅当りの流量と基材速度を規定するとウェット 膜厚(=流量/基材速度)が決定される前計量塗布 (pre-metered coating) に大別される。主なウェット コーティング方式を図1に示す。前者であるロール塗 布はカラー鋼板、PET ボトル熱収縮フィルム印刷, 電磁シールドフィルム等の製造に、後者であるスロッ トダイ塗布はディスプレイ反射防止膜やコンデンサ用 グリーンシート等の製造に広く用いられている

後計量塗布における過剰液の除去方法は多彩であ り、ノズルから空気流を液膜へ吹き付けることによっ て圧力と粘性力とを作用させる方法(エアナイフ塗 布)、遠心力を作用させる方法(スピン塗布)、狭い間 隙に液を通過させ高い粘性力を作用させる方法(各種 ロール塗布,ブレード塗布)などがある。流体に作用 する粘性(遠心他)力が強いほど薄い液膜が得られる が、実際には操作上の限界がある。例えば走行する基 材と基材に対して並行な剛体ブレードに挟まれたニュ ートン流体のクエット流れの場合、理論ウェット膜厚 はブレードと基材の間のクリアランスの1/2になる。 圧力勾配を伴う現実の流れでは膜厚はクリアランスの 0.6~0.7倍程度である。従ってサブミクロンのウェッ ト厚みを得るためには、高速走行する基材に対してク リアランスを1ミクロン程度にしなければならず、剛 体ブレードでは極めて精密な位置制御が求められる。 これに対して流体圧により変形可能なブレードを用 い、ブレード変形と流体運動を連成した elastohydrodynamic 問題を解くことで、より狭いクリアラ ンスでの薄膜塗布が可能となる場合がある。例えばグ ラビア塗布では、微細な溝(ないしセル)を加工した グラビアロールに対して、表面にゴム被覆を設けたロ ールを押し当てることで、2つのロール間のクリアラ ンスを狭く保ち薄膜塗布を実現することが広く行われ ている。なお外力の寄与は液の粘性係数およびそのせ ん断速度依存性によって異なるので、与えられた基材 速度・ウェット膜厚・塗布方式に応じて望ましい液物

図1 様々な塗布方

性を有する塗布液を選択・調製することが求められる。後計量塗布における液物性とウェット膜厚の関係 については過去に膨大な実験的・理論的研究があり、 その一部は成書¹⁾にまとめられている。

これに対して前計量塗布ではウェット膜厚は液物性 に依存しない。このことから一般に前計量塗布の塗布 精度は後計量塗布に比べて高く,同時多層塗布技術の ほとんどは前計量塗布である。elasto-hydrodynamic 問題はスロットダイ塗布のような前計量塗布でも重要 であり,最近では基材の張力と流体圧との連成問題 (tensioned web over slot, TWOSD)²⁻⁴⁾ や,ゴムロ ールの変形と流体圧との連成問題などを解くことによ る極薄膜塗布技術が議論されている。

3. 粒子による接触線不安定の抑制

動的接触線近傍を~ μ mスケールの解像度で観察す ると、塗布液はある動的接触角 θ で基材に接している ように見える。しかしよりミクロなスケールで見ると 液と基材との間にはごく薄い空気膜が存在しており、 この空気膜を介して気液界面と気固界面との間に引力 (または斥力)が作用する。この界面間力が引力の場 合、空気膜先端が自発的に分裂して微細気泡となるこ とが宮本⁵⁾、Teletzke⁶⁾らによって理論実験の両面 から示されており、微視的な空気同伴現象と呼ばれ る。つまり異なる表面エネルギーを持つ基材上では、 異なる微視的空気同伴が現われる。

これに対して高速塗布条件下で,空気膜は突端を持 つ3次元楔状へと変化する。さらに基材速度を増加さ せるとある臨界速度以上で不安定となり,突端から気 泡が間欠的に液中へ同伴されはじめる。これは巨視的 な空気同伴現象と呼ばれる。接触線ではミクロな分子 置換とマクロな流体運動とが相互に干渉しあい,階層 的で複雑な3次元現象をしばしば引き起こすことか ら,多くの研究者の注目を集めてきた⁷⁾。

巨視的空気同伴の臨界速度を上昇させる手法として 1)流体の慣性力を利用する方法⁸⁻¹¹⁾

1) 加冲的真正乃飞的用,③刀

2)静電気力を利用する方法¹²⁾

3) 基材の表面凹凸を利用する方法¹³⁻¹⁴⁾

4)分散粒子による空気膜破壊を利用する方法¹⁵⁻¹⁷⁾,

5) これらの複合法^{14),17)}

などがこの10年間に提案されてきた。以下では特に 固体粒子の添加による空気同伴抑制についてやや詳 しく述べる。

塗布液に固体粒子を添加すると,液粘度が増加し より強い粘性力が流体に作用するので、空気同伴は 一般により低速で生じる。これに反して、粒子添加 によって空気同伴の臨界速度が増加する条件が存在 することが、シリコンオイル/高分子微粒子系¹⁵⁾、 シリコンオイル / 無機微粒子系¹⁷⁾, 高分子水溶液 / 無機微粒子系¹⁶⁾ などについて報告された。この現象 を説明するモデルの一つとして空気膜破壊モデル (Film - Splitting model) が提案されている¹⁵⁾ (図 2)。このモデルでは (a) 粒子が空気膜を突き破り 基材に衝突すると、(b)帯状に破壊された空気膜が 帯先端の高い毛管力によって収縮し、(c)動的接触 線が上流へ移動することで安定化されるという3つ の過程が考慮されている。空気膜破壊モデルに従っ て1本の帯状空気層を考え、1次元層流を仮定して 運動方程式を解けば次のような空気同伴開始速度の 理論式が得られる。

$$\frac{V_{\rm ae} - V_{\rm ae0}}{V_{\rm ae0}} = 1 / \left(\frac{1}{\Sigma^{1/3} l} + 6\Sigma^{1/3} Ca \cdot l \right)$$

ここで V_{ac} は粒子添加時の空気同伴開始速度、 V_{ac0} は粒 子を添加しない場合の空気同伴開始速度であり、 $Ca=\mu_A V_{ac0}$ のは空気層の粘性力と表面張力の比を表すキ ャピラリ数、Σは単位流体体積当たりの粒子数密度、 lは空気膜の長さ、 μ_A は空気の粘性係数、 σ は表面張 力である。粒子数密度が十分に小さければ、右辺分母 の第2項は無視できるため $V_{ac} \propto \Sigma^{1/3}$ であり空気同伴 開始速度は数密度とともに増加する。逆に粒子数密度 が大きな場合は分母第1項が無視小となり、空気同伴 開始速度が極大となる臨界粒子数密度が存在する。 実験値との比較¹⁵⁾から、このモデルは臨界数密度を 定量的に予測可能であることが報告されている。また 空気膜が短くなるほど、接触線不安定の抑制に必要な 粒子数密度は増加する。

しかしこの空気膜破壊モデルは、1)空気膜厚さは粒 子直径と同等かまたは小さい、2)粒子の回転や表面の 濡れ性は基材への衝突に影響しない、3)空気膜内の潤 滑圧力は充分に小さく粒子衝突に影響を与えない、4) 基材に衝突後、粒子が占めていた体積は速やかに液相 で置換されるといったいくつかの仮定に基づいている ことに注意すべきである。

図 2 粒子による接触線不安定の抑制— film-splitting モデル¹⁵⁾

4. 高速乾燥に伴う成分偏析

塗布液膜内でのナノ粒子のブラウン運動が, 膜収縮 速度および粒子沈降速度に比べて十分に速ければ、膜 内の粒子(または他成分)の濃度分布は均一である。 しかし乾燥条件によっては1つないし複数の成分が気 液界面または固体(基材)液体界面に偏析する。例え ばナノ粒子--高分子-溶媒からなる3成分系を考えよ う。膜収縮が粒子のブラウン運動に比べて速い場合 蒸発面の後退に伴って粒子は気液界面に堆積するの で、表面に粒子濃厚層が形成される。この構造を保っ たまま塗布膜を固化させると、表面に粒子が、底面に 高分子がより高濃度で存在する傾斜膜が得られる。底 面近傍の高分子層は基材と膜との密着性を向上させる 働きをしばしば持つ。粒子層形成の条件は粒子のブラ ウン拡散速度 D/H と膜収縮速度 E の比であるペクレ 数 (Pe=EH/D) によって整理される。ここで H(m) は wet 膜厚、D(m/s) は粒子ブラウン運動の拡散係 数である。Stokes-Einsteinの式が成り立つなら拡散 係数はD=kT/(6πµR)で評価できる。ここで R(m) は粒 子半径, µ (Pa·s) は液粘性係数、T (K) は液温度, k(J/K) はボルツマン定数である。連続体モデルによ る数値解析¹⁸⁾によれば、Pe>10で表面粒子濃厚層と下 層との間にシャープな界面が形成される。同様に高分 子に対するペクレ数 Pep も定義することができる。 表面に粒子層,底面に高分子層が形成されるのは Pe>10かつ Pe>>Pep の場合である。Pep>>Pe では逆 に高分子が表面に偏析し,粒子濃度は底面でより高く なる。Pe ~ Pep<<10なら粒子,高分子とも膜内に均 ーに分布する。

粒子に働く重力が無視できない場合、粒子分布は膜 収縮速度と粒子沈降速度Uの比である沈降数 (sedimentation number, Ns=U/E) によっても変化す る。高分子を含まない粒子分散系について、 Eと H をそれぞれ代表速度、代表長さとして無次元化された 乾燥時間0.05における厚み方向の粒子濃度分布の数値 解析例¹⁹⁾ を図3に示す。PeとNsが共に小さな場合 (a), 膜内の粒子濃度はほぼ均一である。これに対し て Ns が増加すると膜収縮およびブラウン運動に対し て粒子の重力沈降の効果が大きくなり、底面の粒子濃 度が増加し逆に表面のそれは低下する (b)。一方 Pe が増加すると速い膜収縮によって粒子が表面にトラッ プされるため、表面粒子体積分率は最密充填時にそれ に等しくなり、明瞭な粒子濃厚層が形成される(c)。 Pe および Ns のいずれも高い場合には、これらの現 象が同時に起こり、粒子は表面と底面の両方に偏在す る (d)。Cardinal ら¹⁹⁾ は蒸発支配, 沈降支配および拡

図3 異なるペクレ数 (Pe) および沈降数 (Ns) におけるある乾燥時刻の粒子分布¹⁹⁾

散支配の3つに乾燥状態を分類し、PeとNsによる 乾燥領域マップを提案している。さらに彼女らは Cryogenic scanning electron microscopy (Cryo-SEM) を用いた乾燥中の膜内粒子分布の可視化を行い、解析 結果の妥当性を検証している。最近 Buss ら²⁰⁾ は高分 子を含む3成分系へとこの解析手法を拡張し、高分子 添加による粘度増加が乾燥領域に大きな影響を与える ことを示した。更に粒子径の異なる粒子が共存するバ イモーダル系について検討を行い、高分子が存在しな い場合には大きな粒子が沈降し小さな粒子が表面に偏 在するのに対して、高分子を添加することで両粒子の 分布が厚み方向にほぼ均一になることを示している。 こうした乾燥過程における成分偏析状態はi)塗布膜 と基材との密着性, ii) 厚み方向の導電性, iii) 表面へ の高分子偏析によるクラック抑制.iv) 膜表面での光 反射性などを制御する上で実用的に重要である。また 粒子表面に吸着する界面活性剤を含む場合を扱った解 析²¹⁾によれば、粒子偏析によって界面活性剤分布が 形成され、表面または表面と底面に高濃度活性剤層が 生じる。ただしほとんどの既往の研究は球形粒子の分 散系を対象としており、異方性粒子の配向や乾燥過程 における凝集体の形成などが考慮されていないことに 注意しなければならない

5. 表面凹凸の形成

塗布膜が高い流動性を持つ乾燥初期に表面張力分布 が存在すると、しばしば表面凹凸が発生する。例えば 界面活性剤溶液にノズルから熱風を吹きつけた場合 (図4)、ガス相の濃度境界層厚みはノズル直下では薄 く周囲では逆に厚くなるので、乾燥はノズル直下でよ り速く進行する。そのためノズル直下の界面活性剤濃 度は周囲よりも高くなりそこでの表面張力が低下する

図4 表面張力流れによる凹凸形成

ため、表面張力勾配に比例するマランゴニ応力が膜表 面に作用する。この力はノズル直下から周囲へ向かう 表面張力流れ(マランゴニ流れ)を誘起し、結果的に 表面張力の高い点が凸部,低い点が凹部となる表面凹 凸が発生する。その一方で表面凹凸が生じると、液体 表面に曲率に応じた毛管圧が発生する。この圧力は凹 部では雰囲気圧よりも低く, 逆に凸部では雰囲気圧よ りも高くなるので、圧力差によって凸部から凹部へと 向かうレベリング流れが表面張力流れとは逆向きに生 じ、凹凸を抑制するように働く。つまり液内では表面 張力勾配による表面張力流れと圧力差によるレベリン グ流れが競合しており,前者が支配的な場合に表面凹 凸が発達する。現実の熱風乾燥炉の多くでは複数エア ノズルが基材走行方向に配置されており、塗布膜上の ある点の表面張力は基材走行に伴って周期的に変動す るため更に複雑な様相を示す。厳密な数値解析を行う ためには、厚み数ミクロン~数100ミクロンの薄膜に 対して、長さ数m~数10mの乾燥炉内の温度・濃度分 布を解かなければならず計算負荷が高い。表面凹凸の 発達については多くの理論的研究があるが、その多く は単一ノズルを考慮した静的な表面張力勾配下での挙 動を取り扱っているに過ぎない。筆者らは厚み方向の 濃度・温度方程式と面方向の流体運動方程式との one-way coupling を仮定することで、塗布膜が連続 するスリットノズル下を通過することを表現可能なモ デルを表面張力が温度のみに依存する場合22) および 温度・濃度の両方に依存する場合²³⁾について提案し た。一例として、塗布膜表面からの高さ5 cm の位置 に10cm間隔でスリットノズルを配置し、幅5mmの ノズルから350K の熱風を出口速度10m/s で表面へ吹 きつけた場合の表面張力と膜厚の分布を図5²³⁾に示 す。塗布膜がノズル直下を通過すると表面張力は局所 的に低下し、表面張力勾配が発生する。その結果とし て誘起される表面張力流れによって、ノズル直下で幅 ~ cm、高さ~100nm オーダーの長周期かつ左右非対 称な表面凹凸が発生する。一方で、隣接するノズル間 では表面張力勾配が低下し,毛管圧によるレベリング 流れが支配的となるため凹凸は平坦化する。すなわち 乾燥炉内では凹凸形成とその減衰が周期的に生じてお り、塗布膜は極めて動的な変形を経験しながら乾燥す る。粒子分散系については基材走行と無視した静的条 件での解析がある²⁴⁾。

図5 乾燥炉内の動的な表面張力変化と凹凸形成²³⁾

6. おわりに

気液固接触線, 膜内部および気液界面に形成される構 造と塗布・乾燥条件の関係について概説した。乾燥中 の塗布膜の多くは熱力学的な不安定系であり, 他にも 発泡, 相分離, 結晶化など様々な微細構造が発現しう る。しかしその体系化は決して進んでいるとは言え ず, 例えば「所望のフィルム機能を決めた場合にそれ に適した界面作製法をどう選べばよいか?」という疑 間に答えるような学問体系は現時点で整備されている とは言い難い。今後は目的機能を発現するような界面 構造の合理的設計手法の提案が望まれる。

参考文献

- 1) S. F. Kislter, P. M. Schweizer, *Liquid Film* Coating, Chapman&Hall (1997)
- 2) J. Nam, M.S. Carvalho, *Chemical Engineering* Science, 65, 3957 (2010)
- 3) J. Nam, M.S. Carvalho, *Chemical Engineering* Science, 65, 4014 (2010)
- 4) J. Nam, M.S. Carvalho, *Chemical Engineering* Science, 65, 4065 (2010)
- 5) K. Miyamoto, *Industrial Coating Research*, 1, 71 (1991)
- 6) G. F. Teletzke, H.T. Davis, L.E. Scriven, *Revue* de Physique Appliquee, 23, 989 (1988)
- 7) M. Yamamura M, Colloids and Surfaces A: Physicochem. Eng. Aspects 311, 55 (2007)
- 8) T.D. Blake, A. Clarke, K.J. Ruschak, AIChE Journal, 40, 229 (1994)
- 9) T.D. Blake, M. Bracke, Y.D. Shikhmurzaev, *Physics of Fluids*, 11, 1995 (1999).

- M. Yamamura, S. Suematsu, T. Kajiwara K. Adachi, *Chemical Engineering Science*, 55, 931 (2000)
- T.D. Blake, R.A. Dobson, K.J. Ruschak, *Journal of Colloid* and Interface Science, 279, 198 (2004)
- T.D. Blake, A. Clarke, E.H. Stattersfield, Langmuir, 16, 2928 (2000)
- H. Benkreira, *Chemical Engineering Science*, 59, 2745 (2004)
- 14) A. Clarke, AIChE Journal, 48, 2149 (2002)
- 15) M. Yamamura, H. Miura, H. Kage, *AIChE Journal*, 51, 2171 (2005)
- W.B. Chu, J.W. Yang, Y.C. Wang, T.J. Liu, C. Tiu, J. Guo, *Journal of Colloid and Interface Science*, 297, 215 (2006)
- M. Yamamura, A. Matsunaga, Y. Mawatari, K. Adachi, H. Kage, *Chemical Engineering Science*, 61, 5421 (2006)
- A.F. Routh, W.B.Zimmerman, Chemical Engineering Science, 59, 2961 (2004)
- 19) C. M. Cardinal, Y.D. Jung, K.H. Ahn, L.F. Francis, *AIChE Journal*, 56, 2769 (2010)
- 20) F. Buss, C.C. Roberts, K.S. Crawford, K. Peters, L.

Francis, *Journal of Colloid and Interface Science*, **359**, 112 (2011)

- V. Gundabala, W.B. Zimmerman, A.F. Routh, Langmuir, 20, 8721 (2004)
- M. Yamamura, T. Uchinomiy, Y. Mawatari, H. Kage, *International Polymer Processing*, 22, 22 (2007)
- M. Yamamura, T. Uchinomiya, Y. Mawatari, H. Kage, *AIChE Journal*, 55, 1648 (2009)
- 24) S.G. Yiantsios, B.G. Higgins, *Physics of Fluids*, 18, 082103 (2006)

Captions

- Fig. 1 Coating methods for industrial applications
- Fig. 2 Postponed air entrainment in suspensions -Film Splitting model
- Fig.3 The effects of Peclet and sedimentation numbers on particle distributions during drying
- Fig. 4 Surface roughening due to surface-tensiondriven flow
- Fig. 5 Dynamic variations in surface tension and film height under periodic air blowing