テーラーメイド無機ナノクリスタルの創製と液中分散制御 Synthesis and Dispersion of Tailor-made Ceramic Nanocrystals

大原 智^{a)}·佐藤 和好^{b)}

Satoshi OHARA, Dr., Kazuyoshi SATO, Dr.

大阪大学接合科学研究所多元ハイブリッドプロセス技術(栗本鐵工所)寄附研究部門 a)准教授 b)助教

Department of Advanced Processing

for Hybrid Materials (Kurimoto Ltd.), Joining and Welding Research Institute, Osaka University

a) Associate Professor b) Assistant Professor

1. はじめに

セラミックスに代表される無機ナノ材料は、様々な 機能(導電性,半導性,磁性,誘電性,触媒特性等) を有し、広い応用分野が期待されている。これまでの 材料開発において、新しい機能を求める場合、新物質 の合成に頼っていた。しかし、最近のナノテクノロジ -の新興により、同じ物質でもサイズや形態を高次制 御することで、新たな物性が発現することが分かって きた。そのため、材料開発におけるナノレベルでの精 密な構造制御、すなわち「ナノプロセシング」「ナノ ファブリケーション | の位置づけが極めて重要となり つつある。今後、無機ナノ材料をビルディングブロッ クとして、様々なコンポジット・ハイブリッド材料が 開発されて行くことが期待できる。しかしながら、そ のためには無機ナノ材料の構造制御とそのプロセス技 術、および、ナノ材料を液体中に完全に高濃度分散さ せる技術が鍵である。そこで本稿では、先進ナノコン ポジット・ハイブリッド材料創製に向けたファースト ステップとして、テーラーメイドセラミックスナノク リスタルの合成と液中分散制御、および、テーラーメ イドカーボンナノチューブの合成と液中分散制御につ いて、最近の我々の研究成果を中心に報告する。

テーラーメイドセラミックスナノクリス タルの合成と溶媒中分散制御(超臨界水 熱法¹⁻⁵⁾)

近年,超臨界水を反応場とした無機ナノ粒子の in-

situ 有機表面修飾プロセスが阿尻教授(東北大・多元 研)グループで開発されている。この in-situ 有機表 面修飾法は,ナノ粒子のサイズや形状制御にも非常に 有効であり,通常では得られない結晶面を有するセラ ミックスナノクリスタルの生成が確認されている。著 者の一人もこの研究開発に係わったので,まず,この ユニークな無機ナノ粒子の合成と溶媒中分散制御につ いて述べる。

水の物性は臨界点近傍で大きく変化する。室温での 水の誘電率は78と極めて高い値を示し、これが電解質 を安定に溶解させうる極性溶媒としての重要な特性の 要因である。しかし、温度の上昇とともに誘電率は低 下し、臨界点近傍では2~10程度の値となり、超臨界 水では誘電率が非極性溶媒まで低下し水らしさが失わ れる。これは、超臨界状態の水は油と均一相を形成す ることを意味する。この特徴に加え、超臨界水中では 無触媒下で有機合成反応が進行することにヒントし, 有機分子が表面に結合した無機ナノ粒子(ハイブリッ ドナノ粒子)が合成できることが世界で初めて見出し た(図1)。また、本超臨界水熱合成 in-situ 表面修飾 法は、無機ナノ粒子のサイズだけでなく形状制御にも 有効な手法であることが分かってきた。これは、修飾 有機分子の部分的な選択キャッピング効果により、セ ラミックスナノクリスタルの結晶成長が高度に制御 (図2)されたことに起因する。図3に表面修飾する 有機分子の量を変化させて合成したセリア (CeO₂) ナノ粒子を示す。定性的な説明となるが、有機分子を 大量に加えると核発生したナノ粒子の全ての結晶面に 有機分子が吸着し、キャッピング効果により14面体の ナノクリスタルが得られる。一方,適量の有機分子を 添加すると活性の高い結晶面にのみ有機分子は吸着 し,表面修飾により結晶面の活性は低下し安定化す る。そのため,通常の水熱反応では得られない6面体 のナノクリスタルが合成できる。

図4は6面体のセリアナノクリスタルに関する,3 次元トモグラフィー技術を駆使しながら観察した三次 元透過型電子顕微鏡(3D - TEM)写真である。ナ ノクリスタルは薄い四角形状のかたちではなく,明ら かに6面体のキューブ状であることが確認できる。ま た,高分解能TEM写真(図5)から,形状が6面体 だけではなく,その表面に非常にアクティブな(100) 面を有することが明らかとなった(通常のセリアナノ 粒子は8面体で表面は(111)面)。そのため,通常の セリアの機能を凌駕する特性を有し,全くの新材料の ような物性を示すことが確認されている。

なお,これらのナノクリスタルは表面修飾された有 機分子により溶媒中に完全分散するため,図3のよう な大面積で自己組織化した超格子構造を形成する。こ れまでに,超臨界水熱合成*in-situ*表面修飾法により, 種々の無機ナノ粒子が有機溶媒中に完全(透明)分散 させることが可能となり,無機ナノ粒子のハンドリン グ性,分散性が著しく向上できている。また,様々な 有機化合物が無機ナノ粒子表面と反応することが見出 されており,高機能なハイブリッドナノ粒子の合成が 可能となってきている。

テーラーメイドセラミックスナノクリス タルの合成と水中分散制御(錯体液相反 応法⁶⁾)

発表者らは最近,液相プロセス中におけるセラミッ クスナノ粒子の結晶成長を,錯体化学を駆使し有機塩 や無機塩等の部分的選択キャッピング効果により精密 に制御した,テーラーメイドセラミックスナノクリス タルの合成に着手している。本プロセス(図6,7)

図1 超臨界水熱合成 in-situ 有機表面修飾法

図2 有機分子表面修飾によるセラミックスナノクリスタルの結晶成長制御

図3 テーラーメイドセリアナノクリスタルと自己組織化構造
(左図:14面体(4 nm), 右図:6 面体(7 nm))

図4 セリアナノキューブの3D-TEM 写真

は、セラミックスナノ粒子のサイズや形状の制御に非 常に有効であり、これまでにキューブ状、リボン状、 リング状のセラミックスナノクリスタルの合成に成功 している。また、大量製造技術へと展開可能である。 さらに、本プロセスで得られるナノ粒子は単分散性に 非常に優れ、pH 制御による表面電位の静電反発力によ り水中完全分散が可能であることが確認されている。

完全分散のメカニズムは、低 pH 域では表面電位が 高く、粒子表面間距離も10 wt% 程度であればポテン シャル極大となる位置よりまだ十分大きいので DLVO 理論から説明がつくかもしれない。しかし、 シングルナノ領域では、次の二つの要素の影響も予測 される。第一に、3 nm 程度のナノ粒子では、表面に 存在する分子の割合が全分四の50% にもなる。その

図5 セリアナノキューブ(上)と通常のセリアナノ粒子(下)

ため、表面に存在する水酸基密度が高く、周りの水分 子も水素結合し易いため表面電位が非常に高くなり、 水素結合した水は先の2で述べた表面修飾剤のような 効果を発現して、ナノ粒子間に働く van der Waals 引 力を抑制することが推測される。第二の要素として、 ここで生成したシングルナノ粒子のサイズ分布にばら つきが小さく、単分散性に優れることがあげられる。 ナノ粒子の大きさにばらつきがあると、大きな粒子の van der Waals力によりシングルナノ粒子は引きつけ られ、凝集することが容易に想像できる。

では、シングルナノ粒子の水中完全分散できる濃度 限界は、どれくらいであろうか?図7のサンプルで は、約10wt.%(2vol.%程度)のナノ粒子が水中に完 全(透明)分散している。この状態から水分を乾燥に より取り除いても、その透明性はほとんど維持でき る。乾燥後もナノ粒子表面には水酸基や吸着水が幾分 存在するが、その分を差し引いても約30wt.%(7vol.% 程度)のナノ粒子で構成されていると思われる。な お、乾燥後のサンプルに再び水を加え超音波処理を施 すと、シングルナノ粒子は容易に再分散し、図7のよ うに完全透明化し、分散する。この理由は現在検討中 であるが、水和相等が構造化し水和斥力などが作用し ている可能性が考えられる。

4. テーラーメイドカーボンナノマテリアルの 合成と水中分散制御(衝突気相反応法^{7,8)})

また発表者らは最近、アレンデ隕石にヒントを得て

カーボンナノ材料の新規物理的プロセス(図8)の開 発にも着手している。強力遊星ボールミル装置を活用 した衝突エネルギーにより,ユニークな形態のカーボ ンナノチューブ(図9)やオニオン(図10)の生成に 成功した。これは,衝突により瞬間的に鉄鋼材料表面 近傍の局所場が2000℃以上の高温状態(メカノナノホ ットスポット)になり,鉄鋼中に存在する原子レベル で固溶した炭素の気相反応によるものと推測してい る。また,カーボンナノリング(図11)等の新規形態 のカーボンナノ材料創製の可能性を見出している。な お,合成されたカーボンナノオ料は有機分子 (Sodium Deoxycholate (SDC),Sodium Dodecyl Sulfate (SDS),ビタミンE 誘導体等)の表面修飾に より水中完全分散が実現できている。

図6 無機錯体を原料としたセラミックスナノ粒子の新規化学合成プロセス

図7 無機錯体を原料としたセラミックスナノ粒子の液相プロセス

図8 カーボンナノ材料の新規衝突合成プロセス

図9 カーボンナノチューブ

図10 カーボンオニオン

図11 カーボンナノリング

5. おわりに

セラミックスナノ粒子の結晶成長を有機分子等の部 分的選択キャッピング効果により精密に制御した,テ ーラーメイドセラミックスナノクリスタルを中心に紹 介した。このセラミックスナノ粒子は,従来の同じ物 質を凌駕する物性や新機能発現が大いに期待でき,新 材料創製の観点から極めて興味深い。今後,分散制御 した種々の超高機能セラミックスナノ粒子をナノビル ディングブロックとして活用し,先進ナノコンポジッ ト・ハイブリッド材料が開発されていくことが大いに 期待できる。そのための次のステップとして,異種ナ ノ物質・材料間の接合界面制御技術が重要となるが, 平成19年度からスタートした二つの国プロジェクト (鉄鋼材料の革新的高強度・高機能化基盤研究開発 PL:野城教授(阪大・接合研),超ハイブリッド材料 技術開発 PL:阿尻教授(東北大・多元研))等で, 技術基盤が構築されつつある。我々はそれらの基盤技 術をさらに発展させ、テーラーメイドナノ材料をコア とした無機有機融合材料の創製を目指し、栗本鐵工所 と強く連携し研究開発を推進する計画である。さら に、これからの持続可能社会の実現には、循環連鎖可 能な接合界面制御技術も、益々、重要となるものと思 われる。今後は、21世紀の材料循環連鎖システム構築 の観点も含めた多元接合界面設計についても取り組む 予定である。

参考文献

- J. Zhang, S. Ohara, M. Umetsu, T. Naka, Y. Hatekeyama, and T. Adschiri, "Novel Approach to Colloidal Ceria Nanocrystals: Tailor-made Crystal Shape in Supercritical Water", Adv. Mater., 19, p.203-206, (2007).
- 2) K. Kaneko, K. Inoke, B. Freitag, A. B. Hungria, P. A. Midgley, T. W. Hansen, J. Zhang, S. Ohara, and T. Adschiri, "Structual and Morphological Characterization of Cerium Oxide Nanocrystals Prepared by Hydrothermal Synthesis", Nano Lett., 7, p.421-425, (2007).
- 3) D. Rangappa, S. Ohara, T. Naka, A. Kondo, M. Ishii, T. Kobayashi, and T. Adschiri, "Synthesis and Organic Modification of CoAl₂O₄ Nanocrystals under Supercritical Water Conditions", J. Mater. Chem., 17, p.4426-4429, (2007).
- K. Byrappa, S. Ohara, and T. Adschiri, "Nanoparticles Synthesis using Supercritical Fluid Technology -towards Biomedical Applications-", Advanced Drug Delivery Reviews, 60, p.299-327, (2008).
- 5) S. Takami, S. Ohara, T. Adschiri, Y. Wakayama, and T. Chikyow, "Continuous Synthesis of Organic-Inorganic Hybridized Cubic Nanoassemblies of Octahedral Cerium Oxide Nanocrystals and Hexanedioic Acid", Dalton Transactions, p.5442-5446, (2008).
- 6)特願2008-284815,"金属酸化物分散液およびその 製造方法",発明者:佐藤和好,阿部浩也,大原智, 福井武久,出願者:大阪大学,株式会社栗本鐵工 所,出願日:平成20年11月5日.
- 7)特願2008-274811, "ナノ材料の製造方法およびナ ノ材料",発明者:大原智,阿部浩也,野間淳一,塩

崎修司,出願者:株式会社栗本鐵工所,出願日: 平成20年10月24日.

8) S. Ohara, Z. Tan, J. Noma, T. Hanaichi, K. Sato, and H. Abe, "Collision Synthesis of Unique Carbon Nanomaterials Inspired by the Allende Meteorite", Solid State Comm. (submitted).

Captions

- Fig. 1 The strategy for the synthesis of ceramic nanocrystals in the organic-ligand-assisted supercritical hydrothermal process
- Fig. 2 The shape control of ceramic nanocristals
- Fig. 3 TEM images of the synthesized CeO₂ nanocrystals; left: truncated octahedral nanocrystals (4nm), right: nanocubes (7nm)
- Fig. 4 3D volume rendered images of CeO_2 nanocubes
- Fig. 5 TEM images of the synthesized CeO₂ nanocubes (up) and conventional octahedral nanocrystals (down)
- Fig. 6 The strategy for the synthesis of ceramic nanocrystals from inorganic complex in the liquid-phase reaction
- Fig. 7 The synthesis of ceramic nanocrystals from inorganic complex by the hydrothermal process
- Fig. 8 The strategy for the synthesis of carbon nanomaterials by a novel collision process
- Fig. 9 TEM images of the synthesized carbon nanotubes
- Fig. 10 TEM images of the synthesized carbon onions
- Fig. 11 AFM and TEM images of the synthesized new carbon nanorings