特集/ナノ粒子プロセスによる材料の高機能化

ナノ粒子の組織化による材料の高機能化 Functionalization by Nanoparticle Assembly Formation

米澤 徹

Tetsu YONEZAWA, Ph. D.

東京大学大学院 理学系研究科 化学専攻 准教授 Associate Professor, Department of Chemistry, School of Science, The University of Tokyo

はじめに

ナノ粒子の機能化について検討され始めて久しく, 特に最近非常に研究が盛んになってきている。今回 は,組織化による材料の高機能化に着目したナノ粒子 の利用について筆者らの研究から選んでご紹介したい。

1. ナノ粒子を用いたデバイス

ナノ粒子を用いたさまざまなデバイスについて検討 されている。プラズモン共鳴吸収をナノ粒子の凝集に よって制御したセンシングデバイスや、蛍光を利用し たデバイス、磁気特性を利用したものや、電子デバイ スなども考えられている。我々は、まだ基礎的研究で はあるがこうしたナノ粒子の1次元配列、シリコン上 の固定について検討を重ねてきている。その例につい て少しお伝えしたい。

ナノ粒子の1次元配列形成のためには一般的にはテ ンプレートが必要である。基板上への制御された修飾 や、部分的なスクラッチやエッチング、結晶の示す凹 凸の利用、メゾスコピックなホールなど様々な1次元 テンプレートが考えられる。筆者らは、アニオン性剛 直高分子としてのDNAに着目し、ナノ粒子表面を、 非常に小さな(8Å)4級アンモニウム分子(チオコ リンブロミド)でコートしてカチオン化し、DNA上 に密に集積させた。図1に金ナノ粒子をDNA上に固 定化した TEM 写真を示すが、DNA上で金ナノ粒子 は自己融合し、ワイヤー状に成長していることが見て 取れる¹⁾。他の金属ではこのような自己融合が見られ ず,金の特徴であると理解される。また,パラジウム 粒子を用いて得られた DNA -ナノ粒子組織体をハン ドリング(図2)し²⁾,電流 - 電圧曲線を観察したと ころ抵抗値は大きいもののオーミックな挙動が見受け られた。

こうした金属ナノ粒子は非常に小さなチャージをた

図 1 カチオン性金ナノ粒子と DNA との複合体の TEM 写真

図 2 カチオン性パラジウムナノ粒子と DNA との複 合体の STEM 像とハサミをもちいたハンドリ ング

図3 金ナノ粒子を用いたバイオフォトセンサ のコンセプト

めることのできるコンデンサとしても動作する。図3 に示すような光合成素子を組み込んだナノ粒子デバイ スを設計・構築したところ³⁾,光合成素子から供与さ れる電子が導くナノ粒子の持つチャージを FET のゲ ート電圧によって測定可能であることが見出された。

2. 銅ナノ粒子の応用展開

銅超微粒子・ナノ粒子は、金・銀ナノ粒子に比べ酸 化され易いためこれまで多くは検討されてこなかっ た。しかしながら、近年、銀のマイグレーション問題 や価格から、次世代の導電材料としてクローズアップ されてきている。我々は、まず高温焼成での銅粒子の 応用として、セラミックスコンデンサ(MLCC)の内 部電極材料への展開を試みた。

用いた銅ナノ粒子は100-300nm のものであるが, 同様の条件で50nmクラスのものも作ることができる。 この銅粒子は,表面に存在する有機分子の効果によっ て酸化が抑制されており,空気中で比較的長期間色変 しないことが分かっているものである。この銅粒子を ペースト化し,チタン酸バリウム粉と交互に印刷し MLCCを作製した。図4に積層したコンデンサの断 面 SEM 写真を示したが,銅ナノ粒子の粒子径はよく 揃っており,非常に密にスタッキングしていることが 見て取れる。また,この微粒子を還元雰囲気下におい て焼成すると,図5のような銅薄膜をつくることがで きる。

こうして作られた MLCC モジュールを還元雰囲気 下に焼結させたところ,連続性の極めて高い銅電極層 の形成に成功しており,現状のニッケル粉を用いる場 合よりも低温焼成が可能である。

図4 銅を内部電極とした MLCC の断面 SEM 写真

図 5 粒径100nm の銅微粒子を900℃でアニールし て作成した銅薄膜

おわりに

ナノ粒子は、その個々の物性や構造にも興味が持た れるが、組織体としての構造や性質にも新しいものが あると期待できる。そこに、例えばナノホトニクス⁴⁾ のようなこれまでにない新しい物理の発現が予感され る。また、私たちは、田中耕一フェローがノーベル賞 を受賞されたレーザー脱離イオン化質量分析(LDI-MS)法への微粒子の応用展開も行っているところで ある。⁵⁾ 最近の研究については、書籍として刊行した ので、ぜひご覧いただきたい。⁶⁾

参考文献

- 1) T. Yonezawa, S. Onoue, and N. Kimizuka, *Chem. Lett.*, 1172 (2002).
- 2) M. Hosogi, G. Hashiguchi, M. Haga, T. Yonezawa,
 K. Kakushima, and H. Fujita, *Jpn. J. Appl. Phys.*,
 44, L955 (2005).
- 3) N. Terasaki, N. Yamamoto, K. Tamada, M. Hattori, T. Hiraga, A. Tohri, I. Sato, M. Iwai, M.

Iwai, S. Taguchi, I. Enami, Y. Inoue, Y. Yamanoi, T. Yonezawa, K. Mizuno, M. Murata, H. Nishihara, S. Yoneyama, M. Minakata, T. Ohmori, M. Sakai, and M. Fujii, *Biochim. Biophys. Acta*, **1767**, 653 (2007).

- 4) 大津元一,「ナノ・フォトニクス」, 米田出版 (1999).
- 5) H. Kawasaki, T. Yonezawa, T. Watanabe, R. Arakawa, J. Phys. Chem. C, 111, (2007).
- 6)米澤 徹 編集,「ナノ粒子の創製と応用展開」, フロンティア出版 (2008).

Captions

- Fig. 1 TEM image of cationic Au nanoparticle-DNA composite
- Fig. 2 STEM image of cationic Pd nanoparticle-DNA composite and their handling with tweezers (inset)
- Fig. 3 The concept image of bio- photosensor system with a nanoparticle
- Fig. 4 Cross-sectional SEM image of a Cu-MLCC module before sintering
- Fig. 5 Optical image of Cu films prepared from 100-nm sized Cu particles by firing at 900 $^\circ\!\!C$