特集/ナノパーティクルテクノロジー:応用・実用化への新展開

LiCoO₂ナノ粒子の合成とリチウム二次電池への応用展開 Synthesize of LiCoO₂ by Excess Li Method and Application for Li Secondary Cells

山木 準一^{a)}・土井 貴之^{b)}・岡田 重人^{c)} Jun-ichi YAMAKI, Ph. D., Takayuki DOI, Ph. D., Shigeto OKADA, Ph. D.

九州大学先導物質化学研究所 a)教授,b)助教授,c)准教授 Institute for Materials Chemistry and Engineering, Kyushu University a) Professor, b) Assistant Professor,c) Associate Professor

1. はじめに

リチウムイオン電池は、他の電池と比べ高電圧・高 容量であることから携帯電話やノート型パソコンなど 様々なポータブル電気機器の電源として用いられてい る。そして現在、この高性能なリチウムイオン電池を ハイブリッド自動車や電気自動車の電源に用いる試み が精力的になされている。しかしリチウムイオン電池 はセラミックス正極活物質へのリチウムイオンのイン ターカレーション反応を伴うことから大電流を取り出 すことが難しいという問題がある。そこで、リチウム イオン電池の正極活物質をナノサイズ化し、表面積を 増大させることにより、またリチウムイオンの固体内 拡散距離を短くすることによりこの問題の解決を試み た。まず、ナノサイズ効果によりリチウムイオン電 池の高性能化を図るため、リチウム過剰法を用いて超 微細 LiCoO2粒子の合成を試みた。この超微細 LiCoO。 粒子を用いて電極を作製し、大電流放電における容量 低下が少ないことを明らかにした。ところが、電池の レート特性には電極活物質の粒子径のみならず、電極 膜の厚さ、空隙率等が影響を与えており、これら全て の因子を実験的に解析することは難しい。そこで本研 究では、Newman らが作成した多孔体電極動作に基 づく計算プログラムをベースとし、開回路電位にエン トロピー項を導入して電位補正を行い、種々の因子が 電池特性に与える影響について計算により調べた。

リチウム過剰法を用いたナノサイズ LiCoO₂粒子の合成

焼成時の粒成長を抑制するため、出発原料のLi源 を過剰に加えて焼成するリチウム過剰法を用いた。

2.1 実験

CH₃COOLi・2H₂O と (CH₃COO)₂Co・4H₂O をモル 比 x:1 (x=21, 40, 100) 量り取り純水に溶かす。攪拌 しながら加熱し水を蒸発させ乾燥した混合物を得る。 その混合物を大気中600℃で6時間焼成しLi₂CO₃と LiCoO₂の混合物である灰色の物質を得る。この灰色 の物質をめのう乳鉢でよくすり潰し粉体とした後、大 量の水で洗浄するとLi₂CO₃は除去されナノサイズの LiCoO₂粒子を得ることができる。物質の同定には X 線回折測定装置(RINT-2100, RIGAKU)を用い、形 状の観察には透過型電子顕微鏡(TECNAI F2O, FEI Co.)を用いた。

2.2 結果および結果

図1にSEM像を示す。8倍および12倍過剰では 25nm程度の粒子が観察された。21倍過剰では太さ約 5nm,長さ数十nmの棒状の粒子が観察された¹⁾。得 られた物質はLiCoO₂で有る事をXRDで確認した。 収率はCoベースで,8倍過剰が87%,12倍過剰が 94%,21倍過剰が82%であった。

焼成条件の精査を行った。XRD により生成物の同 定を行った。図2に示すように、400℃および500℃の 焼成では目的とする高温相(HT) LiCoO₂の他に Co_3O_4 や低温相(LT) LiCoO₂が不純物相として混在し

Diameter: ca. 23 nm

Diameter :ca. 5 nm, Length: ca. 60 nm

図1 リチウム過剰法で合成した LiCoO₂の SEM 像

た。800℃の焼成ではLi₂CO₃が溶融状態となるためLi 過剰法の効果が得られず粒子径が大きくなり、また CoO や Co が不純物として混在した。600℃の焼成が 最適であった。

3. ナノサイズLiCoO2粒子の大電流放電特性

図1の4種類のLiCoO₂を用いて、コイン電池を作成し電気化学特性を測定した。図3にコイン電池作成 条件と充放電条件を示す。

Particle Size [nm;Primary particle (Secondary particle)]

The electrochemical properties of LiCoO₂ powders

Coin-type cells (20 mm in diameter, 3.2 mm thick)

Cathode; the $LiCoO_2$ powder: acetylene black: polyvinylidene fluoride (PVDF) = 90:5:5 (wt.) in n-methylpyrrolidinone (NMP) Coated on an Al foil.

Anode; Li metal

Electrolyte: 1M LiPF₆ EC+DMC(1:1 in vol.)

Separator:: Celgard 3501

The cells were cycled using a cell cycler (Hokuto Denkou, HJ 101-SM 6) at 25 ¹/₄C. Charge current: 0.1 mA/cm² Discharge current: 0.1-24 mA/cm²

図3 コイン電池作成条件と充放電条件

市販のリチウムイオン電池と同じ手法で正極シート を作製した。最初に行った放電測定では、ナノサイズ 化の効果がみられず、5μm粒子径のLiCoO₂とナノ サイズ化LiCoO₂で大電流放電においても容量の違い はみられなかった。原子吸光分析でLi量を定量した 所、ナノサイズ化LiCoO₂ではLi量が式量より多い事 が分かった。そのため、Li₂CO₃が除去しきれていない のだろうと予想し、さらに洗浄を行ったところ、図4 に示すようにナノサイズ化LiCoO₂で初期容量の向上 がみられた。ナノサイズ化LiCoO₂では電圧低下も小 さく予想通りの結果が得られた。

さらにアセチレンブラックの添加量を5%から

10%,15%と増加した所,図5に示すように,15%添加で利用率が最大となった。実用的には,25Cの大電流放電で(2分24秒で放電完了),正極利用率80%を 達成(小電流放電時の容量の80%を維持)し,ハイブ リッド電気自動者用の電池として充分な大電流放電特 性を確認出来た。 電極内の空隙率,導電剤として混合するアセチレンブ ラック(AB)の量など多くのパラメータにより複雑 に影響され,傾向がつかめないことが分かった。その ため,これらのパラメータを考慮した多孔体電極理論 を用いて理論計算を行い,実験結果の整理を開始し た。

しかし、実験結果は、LiCoO2の粒径や電極厚さ、

-16-

4. 多孔体電極理論を用いた理論計算

4.1 計算方法

電池モデルはポーラス正極,セパレータ,リチウム 金属負極により構成される。ポーラス電極は粒子状の 活物質,電子導電剤,結着剤からなる多孔体であり, その空孔は電解液で満たされる。このような多孔体電 極を用いて得られる電池特性についてはUniversity of California, Berkeley の Newman らにより計算的手 法を用いて調べられている²⁾。本研究では彼らがホー ムページ(http://www.cchem.berkeley.edu/~jsngrp/) で公開し自由に利用できる基本プログラム(dual. f (version 4.0))を用いて電池特性を調べた。

この多孔体モデルでは電極中の全ての点で電気化学 反応が生じるものと近似し,電解液相と活物質相を区 別しない一次元座標で記述される。変数は①電解液中 のLi⁺濃度,②電解液の電位,③活物質表面のLi濃 度,④電解液中のイオン電流,⑤電気化学反応による 電流,⑥活物質表面の電位の6つで,①電解液中の Li⁺濃度の拡散による変化と電気化学反応による消 費,②電解液電位に対するオームの法則,③固相中の 電子の流れに対するオームの法則,④ Butler-Volmer 式((6)式)に使う電気化学反応によるLi⁺の消費, ⑤活物質中のLiの拡散,⑥イオン電流と電子電流の 和が全電流,という6つの微分方程式により,解が得 られる。

これをコンピュータを用いて解くには、位置 x を 不連続なポイント x1, x2, x3,----- で置き換える。ま た、時間 t も同様に、t1, t2, t3----- で置き換える。 これにより、微分方程式を差分方程式で表す。

4.2 計算プログラムの変更

従来のプログラムでは活物質開回路電位が3.82V 以下には低下しない問題があったが、本研究では開回路 電位 U (OCP) に対して新たにエントロピー³⁾を導入して補正した U'を用いた。

$$U' = U - RT/F \ln [y/(1-y)]$$
 (1)

ここで, yはLi_yCoO₂ (0<y<1) により示されるリ チウム量である。

また,金村らの報告⁴⁾をもとに正極活物質内のLi⁺ イオンの拡散係数は $1.0 \times 10^{-16} \text{ m}^2/\text{sec}$,Fk^oは電荷移 動抵抗(R_{et})の実験値をもとに(2)(3)式より $1.5 \times 10^{-6} \text{ Cm}^{25}\text{s}^{-1}\text{mol}^{-15}$ と求めた。ここで,j_oは交換電流密

度である。

$$\begin{split} R_{ct} &= RT \ / \ Fj_o \ --- \ \ (2) \\ j_o &= Fk^o C^{0.5} (Cs_{max} - Css)^{0.5} Css^{0.5} \ --- \ \ (3) \end{split}$$

4.3 結果および考察

電池モデルは正極に LiCoO₂, 負極にリチウム金属 を用いた。セパレータの厚みは25μmとし, LiCoO₂の 粒子径を10nm, 100nm, 1000nmとした。開回路電位 にエントロピー項を導入する前は, 大電流放電におい ても電極厚さ方向の活物質使用率がほとんど同じであ り計算結果に疑問があったが, 導入後は改善された。

ポーラス電極内のLiCoO₂粒子径が電池容量に与え る影響を図6に示す。正極はLiCoO₂:(アセチレンブ ラック(AB)+ポリビニリデンフルオロライド (PVdF))=80:20(wt.%)とし、カットオフ電位は 3.5Vとした。粒径10 nmと100nm,では電流密度が 増大しても放電容量の低下が抑えられており、優れた レート特性を示すことがわかった。今後さらに詳細な 実験値との比較を行う予定である。

参考文献

- T. Kawamura, M. Makidera, S. Okada, K. Koga, N. Miura, and J. Yamaki, *J. Power Sources*, 146 (2005) 27.
- J. Newman and K. E. Thomas-Alyea, *Electrochemical Systems*, Third Edition, A John Wiley & Sons, Inc Publication, 2004.
- J.Yamaki, M. Egashira, and S. Okada, J. Power Sources, 90 (2000) 116.
- 4) Y. H. Rho and K. Kanamura, J. Electrochem. Soc, 151 (2005) A1406.

Captions

- Fig.1 SEM image of $LiCoO_2$ synthesized by excess Li method
- Fig.2 Dependence of products and particle diameter on calcination condition
- Fig.3 Cell construction and cycling condition
- Fig.4 Initial discharge performance
- Fig.5 Dependence of the amount of acetylene black on rate capability
- Fig.6 Result of calculation