特集/ナノパーティクルテクノロジー:応用・実用化への新展開

メカノケミストリーによるナノテクチャレンジ

Nano-tech-challenge by Mechanochemistry

齋藤 文良

Fumio SAITO, Dr.

東北大学多元物質科学研究所 教授 Professor, Institute of Multidisciplinary Research for Advanced Material (IMRAM), Tohoku University

筆者らは、メカノケミカル(MC)法の工学的利用 を目指した研究を推進している。この方法は、固体を 粉砕して微粉化し、活性にして固相間での反応や周囲 物質との相互作用により物質創製や物質分離法を指 す。MC法による固相反応では物質内で数十nmオー ダーの粒子設計が出来るし、相互作用の利用では、低 温加熱操作と併用して容易に焼結体ができ、また、常 温ないしは低温加熱下での水洗あるいは酸処理で目的 成分を簡単に選択抽出できる。その応用では、天然あ るいは人工資源の高付加価値化、有価物の効果的分離 などがあげられる。ただし、経済性を考えて対象物を 適切に選択することが重要である。

本講演では, MC 法の基本原理を利用して材料合 成, 資源処理などへのナノテクチャレンジを行ってき た筆者らの一連の取組例を紹介する。

1. はじめに

固体を粉砕すると微粉化し,活性になる。そこでは, 固体表面の結合状態,構造が変化し,固体の物理化学的 性質が変化する。この変化を取り扱う学問分野はメカ ノケミストリーである。そのエネルギーレベルは,熱化 学を上回るといわれ¹⁾,これまでにも多くのユニーク な現象が報告されている²⁾。異種物質の粉砕では,不安 定(活性)相を経て固相反応が進行するが,この反応過 程は,加熱・溶融法における経路とは異なる³⁾。メカノ ケミカル(MC)法の基本原理より引き出される物質 の原子分子レベルの固相を取り巻く雰囲気との相互作 用から,湿式あるいは加熱法と組み合わせることによ り資源からの有価物回収が可能になる場合が多い。 筆者らは,MC法を利用し,主として触媒合成,天 然・人工資源からの有価物分離とそのプロセスの最適 化のための粉砕機媒体運動のシミュレーション法の開 発に関する研究を推進してきた。特に,前者ではナノ レベルでの結晶構造制御に関わり,いわばナノテクチ ャレンジの範疇の研究である。

2. メカノケミカル(MC)効果

結晶質物質に対し粉砕操作を継続すると,新生表面 積の増大と共に継ぎ手を失った表面原子・分子数が増 大する。それらの結合状態の乱れは表面層近傍に及 び,粉末固体は活性となり,乾式粉砕では微粒子の凝 集が起こり,見かけの表面積が減少する。また,この 活性表面では空気中の水分やガスが吸着する。これら 微粒子凝集やガスの表面吸着は,活性化した微粒子表 面の化学ポテンシャルの低下をもたらし安定になる。 安定化の結果として,種々の相転移や固体表面で様々 な化学反応が起こる。これらの変化を総称してメカノ ケミカル効果といい,粉砕のマクロとミクロな変化と 合わせてイメージで示すと図1となる。

例えば、calcite(CaCO₃,六方晶)からaragonite(斜 方晶), TiO₂ (anatase, 正方晶)からrutile(斜方晶) への変化は良く知られている。この MC 相転移につい ては、その途中で結晶格子のひずみ、無定形相や中間 相などが認められる。研究室発足当時、図2に示す粘 土鉱物を粉砕するとその構造は無定型化するがその機 構を動径分布関数解析した結果、水酸基の離脱が原因 であることを明確にした⁴⁾が、そのことが後の石膏 (CaSO₄·2H₂O)との混合粉砕で水分子がタルクへ移

図2 粘土鉱物の結晶構造

動し硬化体が生成する機構解明につながった5)。

また、相転移には雰囲気が影響し、calcite から aragonite へは雰囲気中の僅かな水分も無視できな い⁶⁾。一方、固体表面では固気、固液、固固各相での 化学反応があり、それらは、一般に反応収率は粉砕時 間(粉砕エネルギー)に依存する。

3. メカノケミカル(MC)固相反応

複数種類の物質を乾式あるいは湿式で粉砕(MC 処 理)すると複合化合物が直接合成できる場合が多い。 MC 処理では、均一混合と活性化が同時進行し、蓄積 許容レベル以上に達すると反応が起こる。様々な系に 対して MC 処理すると、一定の法則が見出される。 表1 A₂O₃と B₂O₅を混合粉砕した場合の固相反応の 可否

図3 MC 処理混合系の $k(=r_A/r_B) \ge t(=(r_A+r_B)/2r_O)$ の 相関

表1には、A₂O₃と B₂O₅を混合粉砕した場合の固相 反応の可否を示す。また、図3には、表1の結果に対 する各酸化物を構成する元素のイオン半径 r との関連 性を示す(□:反応系,■:未反応系)が、これよ り、元素のrからある程度反応の可否が推測できる。 また、触媒として注目されている La-Co 系ペロブス カイト(P)型酸化物をMC法によって(La₂O₃-Co₃O₄)から合成した結果⁷⁾では, 遊星ミル (P-7. 45cm³ポット(ZrO₂製),回転速度は700rpm,(3時 間) で合成を試みた場合、用いるボール(ZrO,製) 径によって合成品の結晶化度が異なる(ボール総量一 定)。これを説明するため、粒子要素法(DEM)に基 づきミル内ボール運動をシミュレーションし、(1)式 で定義されるボールの運動エネルギー E_Nを求め、そ の分布について MC 合成条件との関連性を検討した。 ここに W = ミルに挿入した混合粉体重量, m = ボー

図 4 La₂O₃と Co₃O₄混合処理産物の XRD パターン

ル質量, v_i =衝突するボール間あるいはボールとミル 壁間の相対速度である。

$$E_N = \sum \left(\frac{mv_i^2}{2}\right)/W \tag{1}$$

その結果, 遊星ミルによる MC 処理(3時間)では, 一定の条件を満たすと LaCoO₃が MC 合成でき,この 最低条件を基準とし,シミュレーションによって E_N を求めると,2.54 (J/(s・g)), E_w (= $E_N \cdot S$) = 2.74× 10³ (J/g) となる。

図 4 には種々のボール径を用いて MC 処理し、その E_{to} が2.74×10³ (J/g) なるように時間を調節して得られる産物の XRD を示す。

図より E_{to} が同一であるにもかかわらず,ボール径 が大きい方が目的物質の結晶性が良好になることが分 かる。この説明として,図5にはボール径を変化させ た条件下でのボール運動エネルギー分布を示すが, 図4の結果を考慮すると,MC 固相反応を達成させる には,必要最低限度のボール運動エネルギーが必要で あるといえる。同じような固相合成は,種々の系で確 認されている⁸⁻¹⁰。

4. 微量成分のドーピング

光のエネルギーを利用して化学反応を引き起こすこ とのできる半導体素材は「光触媒」と呼ばれ、その典 型的な物質として、TiO₂、ZnOが挙げられる。特 に、TiO₂、ZnOではバンドギャップ(BG)は3.0~ 3.2eV程度の比較的大きな値を持つため、生活環境中 に存在する紫外線によって強力な酸化・還元作用を得

ることができる。これら金属酸化物光触媒はBGが大 きく、紫外光にしか応答しないが、BGを小さくする と可視光にも応答し、太陽光エネルギーをより有効に 利用することができる。BGを低下させる材料設計法 としてTiO₂, ZnOへの元素ドーピングが注目されて いるおり、特に、TiO₂の酸素サイトをN、Sで置換す ると、可視光照射下で光触媒活性が維持され反応率低 下が少ないことが判明している。TiO₂へのNドーピ ングには、熱窒化法があるが、そこで生成するNド ープTiO₂は500℃以上でNが離脱し、結果として可 視光応答性が低下する。また、TiO₂へのSドーピン グは、困難ながらも、硫化チタンを空気中で熱処理す ることにより達成できる。但し、原料となるTiS₂自 体の合成が難しく、熱処理条件等も容易でない。

簡便なTiO₂へのNあるいはSドーピング法として, 筆者らはMC法を提案し,その触媒特性が高いこと を実証している¹¹⁻¹³⁾。例として,TiO₂へのSドーピン グでは,TiO₂に対しSを0.5%,1%,5%,10%の4段階に 変化させた場合の混合物を粉砕(MC)処理(時間: 20~240minまで変化)し,その後固体表面を清澄に するため400℃まで加熱した。

図6には、10%S添加TiO₂のMC処理試料のXPS スペクトルを示す。図より、Sの結合については、2 つのピークで表され、20分処理試料では、164eVで主 にS自身の結合に由来するピークが現れるのに対し、 120分処理試料では162eVで主にSとTiとの結合に 起因するピークが観察される。これより、長時間の MC処理により、SがTiO₂にドーピングされているこ とが確認できた。

図 6 MC 処理産物の XRS スペクトル

図7には、3種類の調製試料の光反射スペクトルを 示す。TiO₂単独試料のスペクトル(a)に比べ、Sと 一緒に処理した試料では波長400~700nmまで新たな 光吸収が確認され、処理時間が長いほど、吸収の度合 いも大きいことがわかる。これは調整試料のBGが狭 くなり、より長波長の光が吸収できるからであり、S ドーピングが達成されていることを意味する。Sドー ピング TiO₂試料による NO ガス分解試験結果は、図 には示さないが、510nm 波長の可視光照射下では、 TiO₂単独 MC 処理試料に比べ顕著な NO ガス分解特 性を示すことが確認できた。

なお, TiO₂へのNドーピングも窒素源(尿素, ア ンモニアガス) 共存下で MC 処理することによって 達成でき, 同様な NO ガス分解特性を示すことを確認 している。

5. 資源処理プロセスの開発

(1) 鉱物処理への応用

筆者らは、粉砕を利用してセレスタイト(主成分: SrSO₄)から

1) 固体 NaOH との乾式混合粉砕(MC 処理)

- 2) 産物の空気中放置(炭酸化)
- 3) 放置産物の水洗とろ過

の3ステップにより、SrCO₃を固相として回収・精製 することに成功した¹⁴⁾。

図8には、乾式 MC 処理時間とSrCO₃の収率の関係を示すが、空気中での炭酸化時間が最終的なSrCO₃の収率に大きく影響する。

同様なプロセスは、バライト(主成分:BaSO₄)から のBaCO₃製造・精製にも適用できるが、その場合には、 溶媒抽出工程で、溶媒の選択に注意を要し、溶解度積 の概念を念頭におく必要がある¹⁵⁾。また、炭酸塩鉱石か ら水酸化物を製造・分離する場合や、タングステン酸 塩鉱石から可溶性タングステンを得て、これを分離す る場合には、上記の第2ステップは不要であり、プロ セス全体は簡略化できる。なお、本プロセスは、特に 液相では起こり得ない反応物質系に対して有効である。

(2) 廃蛍光灯(3波長型)からのレアメタル回収

乾式 MC 処理と弱酸による抽出操作を組み合わせ ると蛍光材からのレアメタルが非加熱で可溶化し,回 収が容易となる^{16,17)}。

図8 セレスタイト(SrSO₄)からの SrSO₃収率とMC 処理時間の関係

図9 レアメタル収率と MC 処理時間の関係

図9には蛍光材(三波長型)を乾式 MC処理(粉 砕)し、その後1N塩酸で浸出実験を行った時の各レ アメタルの浸出率と MC処理時間との関係を示す¹⁵⁾。 同図より、いずれのレアメタルも処理時間に差はある が80%以上の収率で抽出できることがわかる。従来の 研究では120℃、数十規定の強酸でしか蛍光材から抽 出できなかったレアメタルが、粉砕(MC処理)を経 ることによって簡単に抽出できることを意味する。蛍 光材の MC処理では含有するレアメタル化合物の結 晶構造が無定形化されたための結果であるが、MC処 理条件を制御することによって酸抽出段階でレアメタ ル相互の逐次溶解も可能である。

なお、溶存する酸液からのレアメタル回収法は確立 されている。

(3) 重油燃焼煤からのバナジウム回収

乾式 MC 法を利用すると重油燃焼煤(EP ダスト, 主要化学成分:硫酸アンモニウム約62%,炭素約 28%,その他バナジウム(V)約1.5%等が微量含まれ る)から V を水で抽出可能となる。

図10には EP ダストを遊星ミル,振動ミル,転動ミ ルでそれぞれ乾式粉砕した後,蒸留水で可溶性 V を 浸出し, V の収率と MC 処理(粉砕)時間との関係 を示す¹⁸⁾。図より,遊星ミルを用いた場合は約45分粉 砕で V 収率が90%を越え,それ以上の粉砕処理では 逆に減少する。また,振動ミル,転動ミルでも時間の 違いはあるが同様な傾向を示す。可溶性 V の生成は, EP ダスト中の V₂O₅と硫酸アンモニウムとの MC 反応 によるものであるが,湿式処理では,V の収率向上は 望めない。湿式粉砕では十分な機械的エネルギーが EP ダストに付与され難く,また,固体表面の活性が 液相中ですぐに緩和されるためではないかと考えられ る。ところで,図10の横軸の MC 処理時間を粒子要 素法シミュレーション¹⁹⁾ によって求めたボールの比 衝突エネルギー(衝突運動エネルギー/試料重量)に 代えた結果を図11に示す²⁰⁾が,図10で3種類のミル 毎に大きく離れていた曲線群が,近似的に一つに集約 される。この結果は,MC 反応が媒体ボールの運動エ ネルギーによって支配されていることを示唆する。

(4) ポリ塩化ビニル(PVC)の脱塩素

MC 法と水洗ろ過法を組み合わせて PVC から非加 熱で脱塩素することができる^{21,22)}。

図12にはその処理プロセスを示す。MC処理工程で

図11 V 収率とボール運動エネルギーとの関係

図12 MC 処理と水洗処理による PVC の脱塩素と処 理産物の利用例

は脱塩素剤を添加するが、その選定は、PVCとの反応性、経済性、取り扱い性、粉砕品からの分離性などを考慮して決める必要がある。CaOをPVCに対して等モル、2倍等量、4倍等量添加してMC処理した場合のPVCからの脱塩素化率を測定した結果、CaOの添加量が大なるほど脱塩素化率ならびに反応速度は良好となった。MC反応の結果生成した塩化物は水洗によって除去でき、固体残渣はポリエチレンと未反応物質の混合物となる。上記の脱塩素化率を100%とする必要があるか否かは、処理後の物質の利用形態による。CaO代替品として種々の無機化合物の他、鉄鋼スラグも利用できる。

6. 樹脂,間伐材などからの水素発生

筆者らは,天然に大量に産出する樹脂や間伐材(主 成分:セルロース)を乾式粉砕し,それを加熱する と,高純度な水素ガスが高効率で発生する現象を見出 した。その概念を図13に示す。

水素は, 燃料電池などで利用が拡大することが期待 されており, それを再生可能なエネルギー源である草 木類(主成分:セルロース)から, 簡単にかつ高純 度・高収率で製造できる手法の開発が望まれている。 われわれの手法は, PVC や木質系廃棄物に無機物を

添加して混合試料を準備し、それをミルを用いて乾式 粉砕(メカノケミカル(MC)処理)し、その産物を 非酸化状態で加熱するとガスが発生する。発生ガスは 4種類で、それらの濃度(%)は、H₂:93.5%、CH₄: 64% で、CO と CO₂は1%以下。現在、木材チップな どを用い、実用化のための確認実験を行っている。本 手法はきわめて簡単である上、古紙なども処理対象に なり、大量に高純度水素が製造可能であるなど、実用 化が期待される(特許出願済み²³⁾)。

7. むすび

メカノケミストリーについては未解明な部分も多い が,徐々に解消されてきた。また,その応用について も模索中ながらも進んでいる。その一つとして,MC 処理とその後の化学的処理(加熱,溶解,浸出など) 操作の組み合わせは有力な手法であり,既に我々との 共同研究成果が資源処理パイロットプラント建設とい う形で具体化している。実施においては経済性などを 考慮することは当然である。もうひとつ忘れてはなら ないことは,コンタミネーションである。特に機能性 重視の材料合成では注意が必要である。

今後も、メカノケミストリーを利用した工業製品、 処理プロセスの更なる出現を心待ちにしつつ、将来の 技術につながる萌芽的、先導的な基礎と応用の研究を 積極的に進めていきたいと考えている。

参考文献

- 1) K.Tkacova, Proc., $1^{st} INCOME$, 1, 9 (1993).
- 2) 仙名 保,化学工学の進歩19,160,化学工学協会 編(槇書店)1985.
- 3) 渡邊龍三他,日本金属学会報, 27, 799 (1988).
- 4) J.M.Filio et al., *Powder Technol.*, **78**, 121 (1994).
- 5) Q.Zhang, et al., *Powder Technol.*, **87**, 67 (1996).
- D.Itabashi, et al., J. Chem. Eng. Japan, 27, 279 (1994).
- T.Tojo, et al., Chemistry for Sustainable Development, 15, 243-247 (2007).
- 8) G.Mi et al. Powder Technol., 97, 178 (1998).
- 9) G.Mi et al. Powder Technol., 93, 77 (1997).
- 10) Q.Zhang et al., Chem. Eng. J., 66, 79 (1997).
- Q. Zhang et. al., J. Am. Ceram. Soc., 87, 1161 (2004).
- 12) S.Yin et. al., Chemi. Lett., 32, 358 (2003).
- 13) J. Lu et. al., Powder Technol., 162, 33 (2006).
- 14) Q.Zhang et al., Chem. Eng., J., 66, 79 (1997).
- 15) Q.Zhang et al., J. Chem. Eng. Japan, 30, 724 (1997).
- Q.Zhang et al., Shigen-to-Sozai (MMIJ), 114, 253 (1998).
- Q.Zhang et al., Shigen-to-Sozai (MMIJ), 115, 185 (1999).
- 18) J.M.Filio et al., J. Chem. Eng. Japan, 27, 492 (1994).
- 19) J.Kano et al., Adv. Powder Technol., 8, 39 (1997).
- 20) J.Kano et al., J. Chem. Eng. Japan, 31, 1014 (1998).
- 21) 張其武他, 粉体工学会誌, 36, 468 (1999).
- 22) W. Tongamp et al., J. Hazard. Mater. 137, 1226 (2006).
- 23) Patent, No.181827 (2007).

Captions

Fig.1 Images in macro and microscopic changes in

various aspects in grinding material

- Fig.2 Crystal structure of clay minerals A) Kaolinite, B) Pyrophillite
- Fig.3 Correlation between $k \ (=r_A/r_B)$ and $t \ (=(r_A+r_B)/2r_O)$
- Fig.4 XRD patterns of the mixture of La_2O_3 and Co_3O_4 milled for 3-hours
- Fig.5 Frequency in the impact energy of balls (E_N) , depending on various ball diameter in planetary milling
- Fig.6 XPS spectra of the mixture of TiO_2 and S milled for 20 and 120min
- Fig.7 Light reflectance spectra of the prepared samples (a·c) as a function of it wavelength.a) 2-hours milling TiO₂
 - b) 20min milling (S-TiO₂)
 - c) 2-hours milling (S-TiO₂)
- Fig.8 Yield of SrCO₃ from celestite (SrSO₄) as a function of milling time, depending oremaining time in air
- Fig.9 Yield of rare metals extracted from fluorescent powder as a function of milling time
- Fig.10 Yield of vanadium extracted from EP dust as a function of milling time, depending on kind of mill
- Fig.11 Yield of vanadium extracted from EP dust as a function of cumulative impact energy of ball calculated based on the DEM simulation method, depending on kind of mill
- Fig.12 Process flow of dechlorination of PVC by its grinding with CaO, and an evample of utilization of the final products
- Fig.13 Process flow of generation of high purity H_2 gas from PVC by its grinding with CaO
- Table 1 Mechanochemical reaction happen or not in the systems of A_2O_3 and B_2O_5 in their milling