特集/ナノパーティクルハンドリング技術が産み出す新材料

ナノ構造制御技術による化粧品用高機能材料の開発 Development of High Performance Materials for Cosmetics with Nano-Structure Control Technology

峯 浩二 Koji MINE

花王㈱ 加工・プロセス開発研究所 Global R&D-Processing Development, Kao Corporation

1. はじめに

近年,構造をナノレベルで制御した材料の開発が各 分野にて活発に行われている。化粧品用では,光の反 射,散乱,透過,吸収といった光学的な制御が主な目 的となっている。本報では化粧品用材料の開発事例と して,パウダーファンデーション用光学制御粉体の開 発(ナノ粒子複合化),紫外線防御剤用金属酸化物ナ ノ粒子分散体の開発(ナノ粒子分散),洗浄料用パー ル結晶(ナノ結晶合成)について紹介し,ナノ粒子の 複合化や分散,合成といったナノ構造制御による各種 機能の向上について報告する。

パウダーファンデーション用光学制御粉 体の開発

パウダーファンデーション (FD) 用の粉体では, 肌への付着性(付き)や展延性(伸び), 撥水・撥油 性(化粧崩れ防止)といった基本性能に加え, 近年で は美肌の再現といった光学的特性の付与が求められて いる。これらの要求を満たす粉体として,酸化チタン や酸化亜鉛,着色顔料などのナノ粒子を,タルクやマ イカなどの板状粒子に付着させ,高分子化合物で被覆 し固定化した複合粉体(図1)を設計した。

この複合粉体を具現化するために開発した,超臨界 CO₂を用いた複合化技術について説明する。

図2に示すように,毒性がなく引火性がない CO₂は 臨界点が穏和な条件(31.1℃,7.38MPa)であり,温 度,圧力ともに臨界点を超えると超臨界 CO₂となる。 超臨界 CO₂は気体と液体の中間的物性である,つま

り,低粘度で拡散・浸透に優れた気体と物質の溶解度 が高い液体の性質を兼ね備える。また,化粧品への使 用に適したフッ素系やシリコーン系の高分子(ポリマ ー)を溶解可能であり,その溶解度を流体密度(圧 力)で制御可能である。

図3に示すように,予め板状粒子とナノ粒子を混合 付着させた混合粒子と被覆剤である高分子化合物を高 圧容器に仕込んだ後,昇温とCO₂による昇圧を行い超 臨界状態で且つ高分子化合物が溶解する条件に調整す る。その条件で撹拌下,一定時間保持し高分子化合物 を溶解させる。この状態で溶解した高分子化合物は, 疎 CO₂部位がナノ粒子表面に吸着している。その後,

図3 超臨界 CO2を用いた複合化プロセス

CO₂を徐々に排出して減圧し高分子化合物の溶解度を 低下させ,粉体表面で高分子化合物を均一に析出(被 覆)させる¹⁾。減圧工程において容器内の温度をCO₂ の臨界温度以上に保ち気液共存領域を経由させないこ とにより,(ナノ)粒子同士の凝集がほとんど無い複 合粉体を調製できる。

従来の有機溶剤を用いた高分子化合物被覆技術で は、脱溶媒時の毛細管力による粒子の凝集が課題であ った(図4)。超臨界 CO₂流体を利用した本技術によ り上記課題を解決でき、化粧品用粉体としての基本性 能及び光学特性を満足する設計通りの複合粉体を、極

不均一な複合化 (子粒子の凝集)

図4 有機溶剤使用時の SEM 観察像

図5 超臨界 CO2使用時の SEM 観察像

めてシンプルな工程で容易に調製することが可能となった(図5)²⁾。

3.紫外線防御剤用金属酸化物ナノ粒子分散 体の開発

地表に到達し人体が浴びる紫外線には、図6に示す ようにUV-A波(波長320~400nm)とUV-B波(290 ~320nm)がある。前者は地表に到達する紫外線の約 90%であり、B波よりも深く皮膚内部に侵入する。一 方、後者はA波の100~1000倍の皮膚への影響力があ る。人体への影響を抑えるためには、UV-A波と UV-B波をバランスよく防御する必要がある。

紫外線防御化粧料に求められる性能としては,紫外 線防御能の他,皮膚に塗布したときの透明性,耐水性,

耐皮脂性,塗布時の感触の良さ,べたつきのなさ,伸 びの良さなどがある。紫外線防御剤には桂皮酸誘導 体,ベンゾフェノン誘導体,安息香酸誘導体,サリチ ル酸誘導体などの有機系紫外線防御剤と酸化チタン (UV-B防御剤)や酸化亜鉛(UV-A防御剤)といっ た無機系ナノ粒子が利用されている。

これらの無機ナノ粒子の揮発性シリコーン油への分 散体と有機系紫外線防御剤を併用した W/O 乳化製剤 が,耐水性や耐皮脂性による紫外線防御効果の持続性 向上の観点より主流となっており,紫外線防御能はも とより塗布時の使用感や透明性の向上のため,シリコ ーン油中での無機ナノ粒子の安定な分散が求められて いる。

紫外線防御化粧料の製造方法の一例は次のとおりで ある。

- 1) 無機ナノ粒子を有機溶剤中に分散後、シリコーン系の表面処理剤を添加し、表面を疎水化処理する
- 2) 乾燥, 粉砕する
- 3)表面処理した無機ナノ粒子をシリコーン油、分 散剤とともに、メディアミルにて高分散化する
- 4)3),有機系紫外線防御剤,シリコーン油,水,乳化剤などを加え,W/O乳化して製品とする

3)の工程について、表面疎水化(シリコーン)処 理を施した数µmの無機粉体凝集物(酸化亜鉛およ び酸化チタン、1次粒径:数+nm)を、メディアミ ルにて、シリコーン油にエタノールを配合した液体中 で分散処理すると、エタノールを配合しない場合にく らべて、分散した微粒子が非水系分散媒中でも負に帯 電する知見を得た。そこで、カチオン性高分子を分散 剤として添加することで、分散処理過程で露出した親 水性の無機粒子表面への吸着を促進し、分散安定化を 試みた。得られた分散体のゼータ電位を測定した結 果、分散剤の添加による負電荷の減少が確認され、カ チオン性高分子の吸着が示唆された。

図7に分散処理前後の分散体を同組成の分散媒で希 釈した際の透過スペクトルを、図8に分散体を厚さ 0.05mmの石英セルに挟んだ際の透明性を示した。こ れらの結果から分散処理により紫外線防御効果及び可 視光透明性が著しく向上していることを確認した。

さらにこの無機ナノ粒子ミル分散体を製品に配合し たところ,製品中でも安定に分散し,紫外線防御能の 向上(図9)と皮膚塗布時の透明性向上(図10)が確 認できた。

図7 分散処理前後の透過スペクトル

n x ミル分	散前 ミル分散後
activity	ster, followed by a 2
20 min	d of moderate activity
rest p	followed by a third
ater, fo	by a third 20 min re
iod of	rate activity in water.
uously	tored to insure that the
ubmer	hile the subject is in t
uched	the conclusion of the I
dried with	out toweling. The seco
sunscree	n and the wet control su

図8 分散体の透明性

図10 製品の皮膚塗布時の透明性

4. 洗浄料用パール結晶の開発

パール結晶はシャンプーやボディーソープ等の洗浄 料に光沢を付与し、高級感を与える板状結晶である。 洗浄料を容器から手のひらに移し光を当てると、特有 のパール外観を楽しむことができる。

パール外観は板状結晶の多重層反射によって発現し ていると考えられている³⁾。パール外観は、光沢と白 さ(濃厚さ)から成る。光沢は、板状結晶が手のひら と平行に配列した時の多重反射によって発現し、白さ (濃厚さ)は乱反射, 散乱によって発現していると考 えている (図11)。

結晶素材としてエチレングリコールジステアレート (EGDS, 凝固点63℃)を用いている。一般的な素材 である。得られるパール結晶の一例を図12に示す。長 径が5~15µm,厚さが250nm程度である。

製造方法としては、乳化晶析法を採用している。乳 化晶析とは、界面活性剤を用いて融液を液滴とした乳 化物を冷却し、晶析させる操作である。板状結晶を得 る他の方法として、融液を直接冷却する方法や溶媒に 溶解した溶液を冷却する方法があるが、前者は分散し た板状結晶として合成するのが難しく. 後者は有機溶 剤を使用するため洗浄料用としては好ましくない。乳 化晶析法は融液の液滴化により、過冷却の実現と結晶 化熱の速やかな除去が可能となり、バルク操作と異な る結晶形状制御が可能である。

80℃に調整した EGDS 乳化物をホットプレート上 のガラス板に乗せ、ホットプレートを0.5℃/min で冷 却した時に CCD カメラで観察した結晶化挙動を図 13a, bに示す。乳化液滴を冷却すると、結晶化は液 滴内で起き、周囲の液滴が逐次的に結晶化している。 液滴1滴における結晶化過程の完了する時間は観察か ら判断する限り非常に短く, 推定0.1秒以下である。

さらにガラス板上でできた結晶を取り出し、水に分散 させて再度CCDカメラで結晶を観察したものを図13c に示す。液滴径よりも小さな板状結晶が生成してい る。つまり,液滴1滴から複数の板状結晶が生成し攪 拌により分散される。

結晶形状は液滴内で生成する結晶数に大きく影響を 受ける。結晶数は核発生数と相関があるので、結局、 結晶形状は液滴内の核発生数に依存すると解釈でき る。核発生数は過冷却度と相関があるので、過冷却度 によって結晶形状を制御できることになる。

過冷却度制御の一例として、冷却速度を変えて、過

白さ(濃厚さ) Ξ パール外観 光沢 +

図11 パール外観発現のしくみ

図12 パール結晶の形状

a 乳化液滴

b 液滴の結晶化 c 水分散後 図13 結晶化挙動

冷却度の変化、またそのときの結晶形状について調べ た。冷媒の冷却速度を0.5℃/min, 5℃/min と変えて 乳化物を80℃から冷却し、パール結晶分散液を調製し た。冷却時の液温のトレンドを図14に示す。冷却速度 が高い方が低い温度で結晶化しており、過冷却度が大

きくなることがわかる。この時のパール結晶の大きさ を表1に示す。冷却速度を高めると長径,短径,厚さ とも小さくなっていることがわかる。

次に調製したパール化剤分散液をモデル洗浄料に配 合したときの外観を図15に示す。0.5℃/min ではメタ リック調の外観であり、5℃/min になるとシルキー 調の外観に変化することがわかる。

冷却速度以外にも,乳化時の攪拌や界面活性剤の組 成によっても過冷却度の制御が可能であることがわか っている。過冷却度制御によって,ナノレベルでパー ル結晶の形状を制御し,消費者の好みや流行に合った パール外観を洗浄剤に付与し,提供することが可能で ある。

5. おわりに

ナノ構造制御による化粧品用材料の開発例について 述べたが、材料の機能を最大限発現させて商品の高品 質化を達成するためには、構成する粒子のナノレベル での精緻なサイズ、形状、構造制御技術とそれらの複 合化、分散、固定化をはじめとした高次構造制御技術 の開発、さらに工業レベルでの生産技術開発が必要で ある。

参考文献

- 1)特許第3457655号
- 2) 特許第3435158号
- 3) Crombie, R.L., Int. J. Cosmet. Sci., 19, 205–214 (1997).

Captions

- Fig. 1 Model of composite powder for foundation
- Fig. 2 Critical point of CO₂
- Fig. 3 Composite process with super critical CO₂
- Fig. 4 SEM figure of composite powder with organic solvent
- Fig. 5 SEM figure of composite powder with super critical CO₂
- Fig. 6 Rays reaching ground
- Fig. 7 Spectrum of ray permeating each sample with/ without mil-dispersing
- Fig. 8 Transparency of each sample with/ without mil-dispersing
- Fig. 9 UV protecting value (SPF) of each product

表1 冷却速度を変えた時の結晶形状

	長径 [µm]	短径 [μm]	厚さ [µm]	
0.5℃/min	4.64 ± 3.10	2.30 ± 1.33	0.26 ± 0.16	
5 ℃/min	2.16 ± 0.98	1.11 ± 0.43	0.19 ± 0.04	

(a)0.5℃/min(b)5℃/min図15 冷却速度を変えたときのパール外観

from dispersion with/ without mildispersing

- Fig. 10 Transparency of each product from dispersion with/ without mil-dispersing
- Fig. 11 Factors consisting of pearling appearance
- Fig. 12 Form of pearling crystal
- Fig. 13 Behavior in forming pearling crystal
- Fig. 14 Temperature trend of each emulsion (suspension) for cooling rate
- Fig. 15 Pearling appearance of each crystal for cooling rate
- Table 1 Size of each crystal for cooling rate