表紙の写真

蛍光色素クマリンを封入した生体適合性高分子PLGAナノスフェア（平均粒子径約200nm）が、ヒト皮膚摘出片の毛穴付近に浸透している状況を共焦点走査型レーザー蛍光顕微鏡を用いて撮った写真。

ナノ粒子は、ミクロンサイズの粒子に比べてはるかに優れた皮膚への浸透性を示します。PLGAナノスフェアは生体に無害な物質に加水分解しながら、その中に封入された薬物を徐々に放出し、その結果持続性のある薬効が得られます。

詳しくはテクニカルノート「ナノ粒子デザインによる化粧品、育毛剤開発などへの展開」の図5（77頁）をご覧下さい。
“粉 砕” 49号 平成17年（2005）目次

【巻 頭 言】 パ ル ル 復 挙
………………………………… 名古屋工業大学 高 橋 久 慎……（1）

＜特 集＞ ここまできたナノ粒子の実用化

粉体シミュレーションによる機能性複合粒子材料の設計
………………………………………… 同志社大学 工学部 日 高 重 助……（3）

粉末プロセッシングによる新材料の創製
………………………………………… 東北大学 花 田 修 治……（12）

ナノ粒子の合成と機能化、実用化に向けて
―NEDOナノ粒子プロジェクトの研究成果―
………………………………………… 広島大学大学院 工学研究科 奥 山 喜 久 夫……（22）

カーボンナノチューブ添加による高性能セラミックスの開発
一摩擦部材としての導電性炭化ケイ素一
………………………………………… 横浜国立大学大学院 環境情報研究院 永 居 将 利……（31）

ナノ粒子コンポジットによる高性能材料の開発
………………………………………… ライオン株式会社 化学品研究所 戸 市 恵 雄……（38）

＜特 集＞ 高分子材料への粒子分散制御

アルコキシシランを用いたシリカ微粒子の分散と工業化
………………………………………… 荒川化学工業 株式会社 研究所 合 田 秀 樹……（43）

高分子材料中への粒子分散プロセスによる
ポリマークリナノコンポジットの開発
………………………………………… 株式会社 盆田中央研究所 有機材料研究室 口 杉 有 光……（49）

ポリマー中へのカーボンナノチューブ(CNT)の分散とその評価
………………………………………… タキロン株式会社 研究開発部 高 須 純 文……（53）

高分子材料中への粒子分散に関するコメント
………………………………………… 東京農工大学大学院 共生科学技術研究所 神 谷 秀 博……（59）

材料の透光観察による粒子分散状態の直接評価
………………………………………… 大阪大学 植物科学研究所 阿 部 浩 也……（62）

内 藤 牧 男
【テクニカルレポート】
ナノ粒子プロセスを適用した固体酸化物形燃料電池低速作動スタック開発に向けて
……………………………………………………(68)
 福井武久

ナノ粒子デジタルによる化粧品、育毛剤開発などへの展開
……………………………………………………(72)
 本広行
 原哲

トナー粒子の革新的製造技術
……………………………………………………(84)
 近水育
 柴田高志
 菅野晴

ドライマスキーDMRの食品への展開
……………………………………………………(91)
 ホソカワミクロン㈱ 粉体システム事業本部

【新製品紹介】
スーパーミクロンミルE
……………………………………………………(95)
 ホソカワミクロン㈱ 粉体システム事業本部

サーモプロセッサC型・F型
……………………………………………………(97)
 ホソカワミクロン㈱ 粉体システム事業本部

アグロボット AGD-2
……………………………………………………(99)
 ホソカワミクロン㈱ 粉体システム事業本部

清 層 圏
……………………………………………………(100)
 ホソカワミクロン㈱ 環境システム事業本部

スーパークリーン バルスジェットコレクタ
……………………………………………………(101)
 ホソカワミクロン㈱ 環境システム事業本部

高機能化粧品「Nano Cryospheres」シリーズ
……………………………………………………(103)
 ㈱ホソカワ粉体技術研究所 宇容科学研究所

【事業紹介】
ホソカワ粉体技術研究所
……………………………………………………(107)
 ㈱ホソカワ粉体技術研究所

生体適合性ナノ粒子のDDSへの応用に関する研究受託
……………………………………………………(109)
 ㈱ホソカワ粉体技術研究所 宇容科学研究所

受託分析ビジネス
……………………………………………………(112)
 ㈱ホソカワ粉体技術研究所 研究開発本部 分析評価室

受託加工ビジネス
……………………………………………………(114)
 ㈱ホソカワ粉体技術研究所 受託加工本部

粉体製造製造業業 業務後記
<Special Subject> Practical application of Nanoparticles has come so far.

Design of Functional Materials Related to Particles by Using Computer Simulation

Department of Chemical Engineering and Materials Science,
Doshisha University Jusuke HIDAKA (3)

Fabrication of Advanced Materials by Powder Processing

Institute for Materials Research,
Tohoku University Shuji HANADA (12)

Nanoparticle Synthesis and Its Application

Recent Progress in NEDO's Nanoparticle Project—
Department of Chemical Engineering
Graduate School of Engineering, Hiroshima University Kikuo OKUYAMA (22)

Development of CNT-Dispersed High Performance Ceramics

Electrical Conductive Silicon Nitride as Bearing Materials—
Graduate School of Environment and Information Sciences,
Yokohama National University Katsutoshi KOMEYA (31)
Jyunti TATAMI

Development of Nano-Composite Materials

Chemicals Research Laboratories,
LION Corporation Norio TOBORI (38)

<Special Subject> Dispersion control of fine particles in the polymer materials

Dispersion of Silica Particles from Alkoxy silane in Polymer Matrix Using
Sol-Gel Curing and Its Industrialization

Research & Development Center
ARAKAWA CHEMICAL INDUSTRIES, LTD. Hidetsu GODA (43)

Development of Polymer Clay Nanocomposites
by Particle Dispersion Process into Polymer

TOYOTA CENTRAL R&D LABS, INC. Arimitsu USUKI (49)

Dispersion of the Carbon-Nanotube (CNT) into the Polymer

Advanced Products Development Dept.
Research & Development Div. TAKIRON CO., LTD. Hirofumi TAKASHI (53)

Comments of Nanoparticles Dispersion in Polymer and Organic Solvents

Institute of Synbiont Science and Technology
Tokyo University of Agriculture and Technology Hidehiro KAMIYA (59)

Direct Characterization of Powder Dispersion State by Optically Transparent Method

Joining and Welding Research Institute
Osaka University Hiroya ABE (62)
Makio NAITO
[Technical Report]

Development of Intermediate-Temperature Operated Solid Oxide Fuel Cell Applying the Nanoparticle Processing

Research & Development Div. Hosokawa Powder Technology Research Institute Takahisa FUKUI (68)

Application of Nanoparticle Design for the Development of Cosmetics and Hair Growth Tonic

Beauty Science Laboratory Hosokawa Powder Technology Research Institute Hiroyuki TSUJIMOTO (72) Kaori HARA

Innovative Production Technology for Toner Particles

Nanoparticle Technology Center Hosokawa Powder Technology Research Institute Naoto SHIBATA (84) Takashi SHIBATA

Joining and Welding Research Institute, Osaka University Kiyoshi NOGI

Applications of Drymeister to the Food Materials

Powder Processing System Division, Hosokawa Micron Corporation (91)

[New Products]

SUPER MICRON MILL model E

Powder Processing System Division, Hosokawa Micron Corporation (95)

THERMO PROCESSOR C type and F type

Powder Processing System Division, Hosokawa Micron Corporation (97)

Aggrobat AGR-2

Powder Processing System Division, Hosokawa Micron Corporation (99)

Air Shower Booth "Sei so ken"

Environmental System Division, Hosokawa Micron Corporation (100)

SUPER CLEAN PULSJEET COLLECTOR

Environmental System Division, Hosokawa Micron Corporation (101)

Nano Cryosphere prime serum

Beauty Science Laboratory, Hosokawa Powder Technology Research Institute (103)

[Business Guide]

Hosokawa Powder Technology Research Institute

Hosokawa Powder Technology Research Institute (107)

Contract Research Business on the Application of Biocompatible Nanoparticles to DDS

Hosokawa Powder Technology Research Institute (109)

Contract Particle Analysis Business

Hosokawa Powder Technology Research Institute (112)

Contract Processing Business

Hosokawa Powder Technology Research Institute (114)
バブル復権

名古屋工業大学

高橋 実

バブル（簡便に気泡と水泡を扱うシステム）が絡む用語は、身の回りに満ち溢れている。多くはあぶく鏡、一泡ふかせる、泡を食う、泡沫な話など印象は皆だ憚らないものである。私自身、シャボン玉遊びでは石鹸水を飲み、方丈記の解釈に悩まされ、浮遊選択の泡の不気味さに驚かされ、幸か不幸かバブル景気には取り残され、胃検査ではゲップの我慢を強いられるなど幾ら年を経ても解決しない。幸うしてビール、カプチーノ、メレンゲ、シェービングクリームなど生活密着の片仮名言葉に恩恵を感じるだけである。

しかし、数年前に含気泡スラリーを用いたセラミックス多孔体の開発やバブルプレーティング法と命名した中空粒子の合成法を機とし、バブルを相手にせざるを得なくなった。多孔体づくりは別の機会に譲るとして、中空粒子の製法はエマルション法、芯粒子除去法、喷霧法など幾つか知られている。バブルプレーティング法は反応ガスを溶液に吹き込み、発生バブルをテンプレートし、その表面に目的物質を沈殿させる単純な方法である。反応系として炭酸ガスとカルシウム溶液を中心に、炭酸カルシウム中空粒子の合成を試みている。切っ掛けはインドネシア留学生引き受けにある。彼女ではドロマイト資源の多量に産し、付加価値のある土壌改良剤などに活用したいという願望があった。このニーズを受け、国際化でも使える新体裁かつ環境に優しい技術を念頭に設定した課題である。馬鹿馬鹿しいほどに簡単なプ
ロセスであるが、予備試験の結果、硫酸カルシウム中空粒子は確かに生成する。情報収集が後追いになったが、多くの研究者が取り組んだ文章は必ずのもの、中空粒子が合成された報告はほとんどないことに驚かされた。現在、硫酸カルシウム中空粒子のニーズは望外に膨らみ、幸いにもベンチャー事業関連の外部資金が獲得でき、量産化や収率向上の段階に至っている。

そこで、何故中空粒子が生成するかに対しては正確なメカニズムは把握できていない。仮説を立てては、溶液の濃度・pH・温度・共存イオン、ガスの濃度・サイズ・安定性、反応時間などのパラメータを弄りつつ検証を試みているが、どうにも分からない。そう考えると、硫酸カルシウムの多形の代表である無色安定なパテライトが容易に生成可能であるという事実に基づく傾向は得られている。しかし、観心の中空粒子はかなり限られた条件でしか生成しないことだけが残っている状況である。考えてみると、多くの先達が成功しなかった理由は分かるもする。取り扱う系は、液系⇒気／液系⇒固／気／液系と反応を伴いつつ1相系から3相系に変化する。さらにパラバールが混入する2相系も追加され、パアル自体が不安定である。液系⇒固／液系の変化となる地域合成でも粒子生成過程は完全に開明されたとは言えない段階で、これは簡単に答えることはない」と覚悟し、次は苦悩を覚悟している。苦悩の連続であるが、パブルと細々粒子の仲間に実感させ難しい。この感覚は、レオロジー測定にも通じるものがある。例えば、バブルが混入すると溶液の密度は下がるので粘度が減少するという非線形的な変化をつよい持ってしまうが（実際、多くの学生が混乱する）、当たり前だが粘度は増加する。

さて、バブルに戻ると、海・地球の中でも淡水魚と海水魚の共棲が問題になったように、ナノバブルが注目を浴びている。一般に、50μm以下をマイクロバブル、1μm以下をナノバブルと呼ぶようであるが、ナノバブルは極めて安定性に優れ、生理活性を有することが報告されている。ここまでのべると、表面の荷電やバブルの強度など、正に固体粒子と違う取り扱いが必要とされる。先述の中空粒子の合成においてもマイクロバブル域からナノバブル域への展開を検討しているが、パブルが実体かバブル界面の析出微粒子が実体か混ざされる。色はわずか、透明塗料ではないが、何の道を勉強したくなる。これを神頼みと人言う。

研究を離れて世を眺めると、バブルの再現が密かに語られているとも聞く。根拠は国家財政の気縄のような赤字額であり、吉田よりその解決は戦争、革命、インフレしないと物議を来さなければならない。経済に底がある、国家負荷の真の意味は理解しきれないが、研究費バブルの練られるとの時代の再現は見たくなく、親しみを覚えてきたバブルが貶められることの無いかぎり願うのみである。
粉体シミュレーションによる機能性微粒子材料の設計

日高 重助

設計によりこれまでの微粒子の実用化

はじめに

粉体微粒子の特徴である量子効果あるいは大きな界面を利用した高機能材料に対する期待は大きく膨らみ、いわば産業での新しい注目を集めている。これにともなって粉体工学における微粒子研究もますます活発で、新しい微粒子合成技術、微粒子の特性制御技術や複合化技術、さらには機能を発現させるための微粒子集積化技術などの分野においては、新粒子技術の世界が実現しようとしている。

微粒子を用いる機能性材料には、微粒子単位での機能を発揮する機能性微粒子と微粒子集積体で機能する材料がある。機能性微粒子は、図1に示すようにその粒子がある特定の環境下に置かれた時、所定の化学的あるいは物理的性質（機能）を発現する粒子である。例えば、所定の電場内での適切な作用力を受けて運動するように設計され、目的の位置に到達して機能を可視化するトナー粒子、あるいは同じ粒子が特定の化学成分やPHなど的情報をキャッチして薬物を放出する医薬品粒子などは近年の機能性粒子である。そのほか感圧あるいは感熱ポリマー粒子など多様の機能性粒子が活躍している。一方、機能性粒子は、入力エネルギーを異なる出力エネルギーに変換するエネルギートランスミッタである。典型的な機能性材料の一つである圧電セラミックスは、ガスコントロールの点火で毎日お世話になっている。"カチン" と発音を与え、火花を飛び立てるガスに点火する。このとき圧電セラミックスは発射力により出力のエネルギーや電気エネルギーに変換している。

これにより機能性粒子や材料は、その高次機能を発現するために多くの化学成分を必要とし、希望する粒子機能やエネルギー変換特性を得るにはそれらの化学成分が機能性微粒子と材料間に適切に分割した粒子構造あるいは材料構造（いわゆる微構造）でなければならない。材料構造が変化するにつれて、粒子や材料の機能はこの粒子構造や材料構造に大きく依存しており、機能性粒子や材料の組織には、プロセスで形成すべき粒子や材料の微構造を設計し、それを正確に形成するプロセスの精密設計法を構築しなければならない。これに対して、これまでの生産プロセス設計法
1. 誘電セラミックス材料の微構造設計

1.1 誘電率推算モデル

誘電セラミックス材料の微構造は、原材料や粒子の特性、成形あるいは焼結条件によって多様に変化し、それが誘電率に大きな影響を与える。この微構造の多様な変化と誘電率の関係を実験的に研究するには限界があり、適切な推算モデルもしくは予測法が必要である。セラミックス材料の微構造の特徴は、図1に示すように微細の観察が必要とされている。

図1 誘電セラミックス材料の微構造

(a) SEM photograph of microstructure in BaTiO₃ ceramic

(b) Rough sketch of microstructure

図2 セラミックスの微構造

(b) Stack of unit cells

図3 微構造モデル

注: ここに示す図は、誘電セラミックス材料の微構造を示すものです。
では直列に、また側面は並列に結合されているので、それを考慮すると、単位セル全体の誘電率は次式で表される。

\[\varepsilon = \frac{d^4}{(d+t)^2} \left(\frac{\varepsilon_0 \varepsilon_r (d+t)}{\varepsilon_d + \varepsilon_0 \varepsilon_r} \right) + \frac{\varepsilon_0 \varepsilon_r t}{(d+t)^2} \]

（4）

焼結体の誘電率

図3(b)のように積算した単位セルに配置された結晶粒、気孔の大きさおよび粒界の厚さはそれぞれのセルで異なる。したがって、各単位セルの幾何学的な大きさは本来異なるべきであるが、本モデルではセルの集積を容易にするために、幾何学的な大きさが一定であるセル内にそれぞれの特性を持つセルを構成し、それらのセルは互いに周囲のセルと接続されているものとする。誘電率の総和に十分多くのセルを用いるならば、この集積方法による誤差は小さいものと考えられる。

いま、x.y.z, 軸に沿ってそれぞれn,m,n 個のセルが並ぶように集積させて図3(b)に示した直方体をを作成すると、この集積した直方全体体の z 方向の電界に対する誘電率は Eq.(6) で与えられる。すなわち、z 方向には n 個の単位セルが並列に結合しており、さらに i×m 個の直列に結合したセル群が互いに並列に結合している。このとき、z 方向に直列で結合しているセル列 (i,j) の誘電率 \(\varepsilon_i \) は次式で与えられる。

\[\varepsilon_i = \frac{1}{\prod_{k=1}^{n} \varepsilon_k - \varepsilon_{i+1}} \left(\frac{\varepsilon_{i+1}}{\varepsilon_k - \varepsilon_{i+1}} \right) - \frac{\varepsilon_{i+1}}{\varepsilon_k - \varepsilon_{i+1}} \]

（5）

したがって、セル列 (i,j) が並列結合したセル集合全体の誘電率は次式で与えられる。

\[\varepsilon_f = \frac{1}{\sum_{i=1}^{n} \varepsilon_i} \]

（6）

1.2 誘電率の推定

実験で得られる結晶粒径分布は、一般に対数正規分布にしたがう。そこで平均、最大および最小結晶粒径 \(d_{\text{min}}, d_{\text{max}}, d_{\text{ave}} \) と幾何標準偏差 \(\sigma_g \) を用い、乱数を用いて対数正規分布になるように各単位セルの結晶粒径を決めた。気孔径についても、同様に対数密度を考慮に入れて測定した気孔径分布に一致するように、ランダムにそれぞれの単位セル内に異なる大きさの気孔を配置した。

一方、結晶粒の誘電率は結晶粒径に依存する。そこで
でArらが報告している結晶粒径と誘電率の関係をもとに各結晶粒径に対応する誘電率を与えた。また竹内ら是BaTiO₃焼結体の粒界の厚みが4nmであること、およびその誘電率が100であることを報告しており、以下の推算にはこの値を採用した。また、x,y,z,粗にそれぞれ100個ずつのセルを配置した立方体とし、合計100万個のセルを用いた。

平均気孔径 \(d_p \) を0.05μm、粒界の厚さ \(t \) を4nmとし、相対密度に応じて気孔径分布を調整しながら誘電率の推算を行った。その結果を平均結晶粒径をパラメータとして図5に実線で示す。同様に平均結晶粒径ならびにその分布と推算誘電率の関係をそれぞれ図6,7の図中に実線で示す。誘電率の推算値はいずれも実験結果と非常によく一致しており、さらに提案した推算モデルが妥当であることが分かる。

1.3 微構造の設計

提案モデルにもとづく誘電率のシミュレーションは、セラミックスの誘電率と微構造（結晶粒径ならびに気孔径分布、粒界の厚さや誘電率など）の関係について詳しく考察する。設計例として誘電率が4000である3相の微構造を図1に示した。実際の設計では、成形あるいは焼結操作における制約から相対密度あるいは結晶粒径などが決まるので、それに応じて粒界の誘電率などの微構造パラメータを知ることになる。

2. 磁性セラミックスの微構造設計

2.1 磁気特性推算モデル

図8にNi-Znフェライトの微構造を示すように、磁性セラミックスも焼結条件などにより微構造が緻密に

図7 結晶粒径分布の影響

図5 誘電率と相対密度の関係

図6 誘電率と結晶粒径

図8 Ni-Znフェライトの微構造
変化する。そこで磁性セラミックスについても、単位セルをキューブ状に積み上げてグレインを表現するセル集積モデルを用い、磁性体の特性がよく知られているスピネル型の結晶構造を持つNi-Znフェライトを対象とした。

まず、図9に示すように単位結晶格子内部に磁化ベクトルを一つ格納し、磁化容易軸の一つが鉛直方向に一致するようにセル内部に配置する。このとき、飽和磁束密度M_sは一定とし、磁化ベクトルの方向余弦を$v(\alpha, \beta, \gamma)$とすると、磁化Mは次式で与えられる。

$$ M = M_s \cdot v(\alpha, \beta, \gamma) \cdot v \cdot v = 1 $$

したがって、磁性体の磁化構造は磁性体の全エネルギーを微小にする$v(\alpha, \beta, \gamma)$を求めることがとにより得られる。磁性体の全エネルギーEは、交換エネルギーE_c、異方性エネルギーE_a、外部磁界によるエネルギーE_h、静磁エネルギーE_dと磁気弾性エネルギーE_{el}の5つのエネルギーからなる。

$$ E = E_c + E_a + E_h + E_d + E_{el} $$

異方性エネルギーは次式で与えられる。

$$ E_a = V \cdot K_a (\alpha^2 \beta^2 + \alpha^2 \gamma^2 + \gamma^2 \alpha^2) $$

ここでK_aは異方性定数、Vは単位セルの体積である。

なおNi-Znフェライトの異方性定数K_aは、-027.981J/ m³とした。

交換エネルギーは、隣接する磁化ベクトルに作用するエネルギーであり、次式で与えられる。

$$ E_c = \int \left[-2JS^2 \cos (\theta_S) \times \frac{N_a}{a^2} \right] dS $$

ここで、Jは交換積分、Sはスピノ量子数、$\Delta \theta_S$は結晶格子間のスピノの角度の差、N_aは磁石の距離に相当する結晶格子の数、aは格子定数である。Ni-Znフェライトの物性を考慮すると次式となる。

$$ E_c = \sum \left[-0.3k_a \left(T - T_0 \right) \cos (\theta_S) \times \frac{N_a}{a^2} \times S \right] $$

次に、静磁エネルギーは気孔の存在する角度、気孔の大きさ、グレインサイズ、そして磁化方向によって決定される。真空中に磁性体が存在する時は、静磁エネルギーE_dは次式で表される。

$$ E_d = \frac{M^2}{2 \mu_0} $$

ここで、μ_0は真空の透磁率、である。図10に示すように気孔が導電している面にエネルギーが働くと仮定すると、Eq.(12)は次式となる。

![図9 磁性セラミックスの微構造モデル](image)

![図10 気孔と静磁エネルギー](image)
ここでの E_d は磁化方向と気孔の位置との角度差、d_d は気孔径、R_0 は単セルの半径の長さである。
磁気弾性エネルギーえは次式で与えられる。

$$E_d = \frac{1}{12} \mu_0 d_d^2 \left(\alpha_1^2 \alpha_2^2 + \alpha_3^2 \alpha_4^2 \right)^{1/3}$$

ここで、σ はひずみによる変形力、λ は磁歪定数、a_1, a_2, a_3 はそれぞれ x, y, z 軸からの方向余弦である。
外部磁場によるエネルギーは外部磁場方向と磁化ベクトルの角度から次式により計算する

$$E_s = -\frac{H}{M_s} \cdot H \cos \theta$$

ここで、H は外部磁界、θ は磁化ベクトルと外部磁場との角度である。E_s は磁化ベクトルが外部磁場と同じ方向を向くとき最も小さく、エネルギー的に安定であり、外部磁場方向との角度が大きくなるほど高くなるエネルギー的に不安定になる。
一方、これらのエネルギーのほかに、結晶やグレインサイズの変化が磁化に影響を与える。結晶には不純物が含まれ、磁性が劣化している。このため、このシミュレーションモデルではキユーピッキ状に積み上げた立方体の表面のセルを結晶とみなし、磁性体の重要な性質である異方向エネルギーと交換エネルギーを無視し、磁性を劣化させて結晶を表現した。また、セラミックスの結晶粒は、焼結の進行とともに粒成長するが、このとき、磁性体内部の磁石帯dは結晶粒の大きさに依存して変化する。これを数値効果と呼び、結晶粒の大きさに応じて次式により磁石帯幅 d を与えた。

$$d = \frac{3b_i \sqrt{A_c K_i}}{K_i}$$

ここで、b_i はグレインサイズ、A_c は交換定数、K_i は結晶の関数、かつスピンの回転面に関係する定数である。
異方向性エネルギー、交換エネルギー、気孔による磁化エネルギー、磁気弾性エネルギー、外部磁場によるエネルギー、結晶、そしてグレインサイズ、及び磁石帯幅を組み込む z 軸方向に外部磁場を印加し、各グレインの磁化を計算した。全てのエネルギーを各セルで計算し、全エネルギーの和が最小となる方向に磁化されるように磁化方向を決定し、それらの磁化の合計を結晶粒全体の磁化とした。そして、外部磁場を-3000 ～3000A/mの範囲で段階的に変化させ、次式により各外部磁場に対応する磁束密度を計算した。

$$B = \mu_0 H + \sum_i \left(\frac{V_i}{V} \cdot M_i \cdot \cos \theta \right)$$

ここで、V_i はセルの体積の合計である。
外部磁場Hを積みに、磁束密度Bを図にプロットして図11に示す磁気ヒステリシス曲線を得た。この磁

![Applied field H [A/m]]

図11 磁気ヒステリシスの推移

気磁ヒステリシス曲線から飽和磁束密度、残留磁束密度、そして保磁力を求めた。

2.2 磁気特性と微構造
磁化過程の一例として、相対密度95%、平均結晶粒

![Relative density : 95% Mean grain size : 10μm]

図12 磁化挙動のシミュレーション
磁化特性の推算

径1.0μmのときの磁化ベクトルのスナップショットを図12に示す。このスナップショットはz方向に磁場を印加しているときの3z平面における磁化の様子を示している。矢印の方向が結晶単位の磁化であり、色濃度で磁化的強さを表している。z方向に平行で進くなるほど磁化されたことを示す。間接化した磁化ベクトルが順に反転し、いわゆる磁壁移動によって磁化されていく様子が確認できる。また、図12c)から、結晶粒の表面の磁化ベクトルは、結晶状態でも、いさりような方向を向く、磁性の劣化している粒界もしくは表現されていることが分かる。図13は磁性セラミックスの相対密度ならびに平均結晶粒径と最大磁束密度の関係であるが、この例にみるように磁気特性の推算値は実験値とよく一致しており計算モデルが信頼できることを示しており、本モデルを用いて磁性セラミックスの微構造設計が可能である。

3. セラミックスプロセスの精密設計

焼結操作の設計

希望の特性を持つセラミックスの微構造が設計されると、その微構造を正確に実現する生産プロセスの精密設計が求められる。セラミックスプロセスにおける主要な操作は「原料粉末の調製」「粒度の作成」「成形」「焼結」であり、これらの操作は目的の微構造を形成するよう相互に強い関連を持たせながら連続される。最近では、物性シミュレーションによりセラミックス生産システムの精密設計が可能になりつつある。ここでは、その一例としてセラミックスの微構造形成に大きな影響を与える焼結過程のシミュレーションを行い、焼結操作と操作条件の関係を明らかにしよう。

(a) Neck growth in sintering process

(b) Mass transfer in sintering process

図14 二粒子の焼結と物質移動機構
3.2 微構造の形成挙動

焼結過程におけるセラミックスの微構造形成には粉体粒子の特性、焼結温度、昇温速度、冷却速度など非常に多くのパラメータが関係する。Monte Carlo法シミュレーションにより微構造形成挙動をシミュレートし、セラミックス原料の粉体特性、焼結条件と微構造形成の関係を検討することが可能となる。すなわち、二次元座標に三角格子を配し、粒子の集合で格子を表現する。粒界-粒界、粒界-粒内、粒内-粒内のそれぞれの界面には対応する界面エネルギーを与え、さらにグレインの成長に関する誤差も考慮する。まず焼結体中の一部の粒子をランダムに選択して移動させ、移動前後のエネルギー差に対して次のMonte Carlo法のアルゴリズムを採用する。すなわち、粒子の移動によって系のポテンシャルエネルギーが変化するとき、(i)\(E_i < E_j \)ならば状態\(j \)を採用する。(ii)\(E_i > E_j \)ならば、0～1の一様乱数\(U \)を発生させ、(a)なるば状態\(j \)を採用する。(b)ならば移動を認めない。ここで、\(K_b \)はボルツマン定数、\(T \)は絶対温度である。

図17はNi焼結体の焼結過程における微構造の発達を示している。MCシミュレーションは時間の概念を含まないが、少しだ工夫をすると焼結時間との対応を考えることもできる。MCシミュレーションによりセラミックス微構造と焼結条件の関係を知り、目的の微構造を形成する焼結操作の設計が可能である。

おわりに

粉体工学に目指す「粉体が関与する材料とその生産システムの設計」に対する粉体シミュレーションの利用について述べた。最近、シミュレーションを利用した粉体材料設計ならびに粉体操作の設計に関しての希望は大きく増加しており、今後のコンピュータの発達と新しいシミュレーション法の提案により、その実
参考文献

Caption

Fig.1 Design method of functional materials
Fig.2 Microstructure of functional ceramics
Fig.3 Model of microstructure in ceramics
Fig.4 Unit cell and its equivalent circuit
Fig.5 Relation between dielectric constant and relative density of BaTiO3 ceramic
Fig.6 Estimated dielectric constant of BaTiO3 ceramic
Fig.7 Effect of grain size distribution on dielectric constant
Fig.8 SEM photograph of microstructure in Ni-Zn ferrite
Fig.9 Modelling of microstructure of magnetic ceramics
Fig.10 Magnetostatic interaction
Fig.11 Hysteresis loop in magnetization obtained by computer simulation
Fig.12 Computer simulation of magnetization behavior in magnetic ceramics
Fig.13 Magnetization characteristics in Ni-Zn ceramics
Fig.14 Neck growth observed in the sintering process of Cu particles
Fig.15 Comparison of estimated values of neck radius with experimental ones
Fig.16 Relative rate of mass transfer in sintering process of Cu particles
Fig.17 Microstructure of ceramics in sintering process obtained by Monte Carlo simulation

Table 1 Example of microstructure design of BaTiO3 ceramic with dielectric constant of 4000
粉末プロセッシングによる新材料の創製

1. はじめに

新材料の創製は必ず必要な加工技術で変えられている。多くの加工技術の中で粉末プロセッシング技術はこれまで最も多くの新材料を創製してきた技術のひとつである。本技術は、高品質で複雑形状をした部品を寸法精度良く経済的に製造する成形加工過程だけでなく、形状・サイズを制御した粉末製造過程、組成・微細組織制御を図った焼結過程の技術を基盤としているため、新材料創製の技術として無限の多様性と可能性を持っていると言える。本講では粉末プロセッシングによる新材料創製の具体的な例をいくつか取り上げて概説する。

2. 粉末焼結法による生体用ポーラシスチン合金の開発

高齢化社会とともに急増することが予想される歯形外科治療または歯科治療において不可欠なインプラント材料として、人体骨を同程度の低ヤング率（10-30 GPa）をもち、細胞毒性のないTi合金が求められている。現在、骨インプラントとして広く使用されているTi合金はTi-6Al-4V（ELI）であり、細胞毒性のあるVが含まれているうえに、ヤング率100-110GPaと人体骨に比べかなり高い。低ヤング率を達成するために最も簡単な方法はポーラシス化である。図1はPREEF粉末

図1 ポーラスTi（工業用純Ti）焼結体の表面SEM写真。a)平均粒径374μmのPREEF粉末を1300℃で焼結、b)平均粒径65μmのガスターボマツイ粉末を1100℃で焼結

末（平均粒径374μm、焼結温度1300℃）とガスターボマツイ粉末（平均粒径65μm、焼結温度1100℃）を高温で固溶化した工業用純Tiの焼結体である。

焼結温度が高いにもかかわらず、緻密なガスターボマツイ粉末の方が粒子間のネック形成が促進されており、粒子径の異なる粉末を種々の温度および圧力で焼結することにより、図2に見られるようにポロシティおよびポアサイズの異なる焼結体が得られる。図3はポーラスTiのヤング率を測定し、ポロシティに対してプロットした結果を示す。ここで、ポロシティはバルクTiとポーラスTiの重量測定結果から算定している。図から明らかに、ヤング率はポロシティの増加とともに直線的に減少する。粉末焼結法によりポロシティを5-35%の範囲で増加させることができるが、それによってヤング率は90-10GPaの範囲で減少する。人体骨のヤング率を20GPaとすると、約30%のポロシティで人体骨と同程度になることが分かれる。ポロシティをゼロに外挿したときのヤング率は100GPaとなり、バルクTiの測定値とほぼ一致する。図4はポロシティ増加により曲げ強度が直線的に減少することを示す。人体骨と同程度のヤング率をもつポーラスTiのポロシティが30%であるとすると、そ
図2 ポラリスTI焼結体の断面OM写真。(a) (b) (c) 1300℃無加圧焼結、(d) (e) (f)は900℃10 MPa焼結、初期粒子径(a) (d) 374 mm、(b) (e) 189 mm (c) (f)。

図3 ポラリスTI焼結体のヤング率とポロシティの関係

のときの曲げ強度は150MPaとなり、人体骨の曲げ強度の近い値である。しかしながら、このときの曲げ強度は曲げ応力-変位曲線の最大応力であり、塑性はいずみは曲げ変形時に低応力から発生する。大きな応力の荷負される部材でのインプラントには強度不足となる可能性がある。

純Tiに比べ、低ヤング率・高強度をもつTi合金をポラリス化することにより、人体骨並みのヤング率と高強度をもつポラリスTi合金が得られると期待される。最近、低ヤング率・高強度をもつバルクTi合金の開発も活発に行われている。細胞毒性の低い（少ない）元素NbをTiに合金化し、高温のβ相領域から急冷すると、Ti-Nb 2 元合金のヤング率の組成依存性には、図5に示すように、β相が安定化する高Nb組成と焼入れでマルテンサイトが生成する低Nb組成と二つの最小値が現れる。冷間加工性の優れるβ Ti合金に注目してTEMにより電子顕微鏡を行うと、β相領域の低Nb側の組成ではathermal ωが明瞭に観察され、Nb量の増加するほどathermal ωの回折強度が減少し、散乱を起こすため、高Nb組成ではathermal ω反射は完全に消失する。したがって、最小値より低Nb側の合金でヤング率が上昇するのはathermal ωの存在を観察する。この組成領域ではNb濃度に依存して、時効によりathermal ωが生成するが、この生成がヤング率の上昇を密接に関係する。これと、ω相の生成を抑制する第三元素の添加によりヤング率がさらに低下することが示唆される（最小値より低Nb側ではNb量の増加とともにβ相が安定になるが、この安定β Ti合金のヤング率が上昇するのは、合金中のNbが酸化するためで、純Nbのヤング率（105GPa）に達して上昇を続ける）。実際に、ヤング率最小値を示すTi-40%Nb合金に細胞毒性の無い（少ない）元素Snを添加すると、
図5 Ti-Nb 2 元合金部分状態図とそれに対応するヤング率。電子回折図形a, b, c, dはヤング率が最小になる組成近くの合金a, b, c, dに対応

図6 β TiNbSn合金のヤング率の結合次数 (βo) 依存性

図7 β Ti-Nb-Sn合金のヤング率のポロシティ依存性

加熱すると，athermal ωがほとんど消失し，ヤング率が減少する7）。Sn添加には原子間の結合力を低下させる効果を期待できるため，Sn添加によるヤング率の低下は相安定性と原子間結合力で支配される。図6は相安定性と原子間結合力を考慮して溶製したβ Ti-Nb-Sn合金の同様化処理後のヤング率を示す。βo原子間結合力を表すパラメーターで，予想通り結合力が低下するとヤング率も低下する。Ti-6Al-4V (ELI) に比べ，約1/2という低ヤング率合金が得られる。

図7はパック状態で低ヤング率を示すβ Ti-Nb-Sn合金（Ti-25wt.%Nb-11.5wt.%Sn）をポーラス化したときのヤング率のポロシティ依存性を比較材としてのポーラス純Tiの結果とともに示す。ポーラスβ Ti-Nb-Sn合金のヤング率は純Tiと同様にポロシティが増加するとともに直線的に減少する。注目されるのは，同じポロシティで比較すると，β Ti-Nb-Sn合金のヤング率は純Tiより若干低いことである。人体骨のヤング率を20GPaとすると，約22%のポロシティで人体骨と同程度になることが分かる。ポーラス純Tiに比べて低ポロシティで20GPaが達成できるため，高強度が得られる。図8は曲げ試験において，曲げ応力－変位曲線で降伏が開始する応力をポロシティに対してプロットした結果で，降伏応力は純Tiより高応力レベルでポロシティとともに直線的に低下する。

β Ti-Mo-Zr-Alにおいても同様な結果が報告されている10）。以上の結果から明らかのように，ポーラスTiあるいはTi合金のヤング率と強度はポーラス化や合
図8 βTi-Nb-Sn合金の降伏応力のポロシティ依存性

金化によって大きく変えるので、用途に応じて適切なポロシティと合金組成を選択することができる。

インプラントをポーラス化することのもう一つの利点は、ポアの存在によって生体組織が空隙に侵入する
と、生体とインプラントとの接着面積が増大し、結合
強度が上昇することである。生体組織の浸入のし易さは
ポアサイズに依存する。図9は図2 (a) (b) (c)に示
した3種類のポアサイズをもつポーラス純Tiを培養
液中に静置し、ヒト歯原細胞を染色後、一
週間後に組織を固定してポーラスTi表面への細胞の
付着伸展の状況を顕微鏡観察で観察した結果を示す。
(a) (b) では培養された細胞が活発に伸展して
いるのに対し、(c) では伸展が見られない。臨床サイズ
以上のポアに対して細胞の侵入が容易であることを示
している。人工歯周部のステムのようなインプラント
では、障害的な大荷重や繰り返し荷重が頻繁に負荷さ
れるため、最新のステムでは力学特性に優れたTi-
6Al-4V (ELI)のようなバルク合金の表面に球形粉末
をコーティングしてポーラス化することにより生体と
の結合強度を上げている。荷重をバルク合金で伝達し、
表面ポーラス部が生体との結合強度を向上させてい
る。しかし前述したように、Ti-6Al-4V (ELI) はVの
細胞毒性と合金の高ヤング率という2つの問題を抱え
ている。そのため、次世代のステムでは、β Ti-Nb-
Snのような細胞毒性のない低ヤング率・高強度合金
を使用して、その表面をポーラス化したハイブリッド
構造になるものと予想される。さらに、ポーラス部
においてポロシティの傾斜化が可能であるので、必
要に応じて表面から内部のバルク部に向けてヤング率
を連続的に変え、インプラントと生体との界面付近に
弾性ひずみの不連続を発生させないように設計するこ
ともできる。図10はポロシティ傾斜化のモデル実験の
結果で、初期粒径の異なる3種類 (37.4, 18.9, 65
μm) の純Ti粉末を1233Kで1 MPaを負荷しながら (応

図9 ポーラスTiに培養された細胞の伸展を示す顕微鏡写真

図10 ポロシティを傾斜化させたポーラスTiの断面OM写真

24.8vol% 19.8vol% 9.8vol%
力は図の左方向である）焼結したときの焼結体の断面OM写真である。ポロシティが傾斜化した3層構造が得られている。それぞれの層におけるポロシティは21.8vol%、19.8vol%、9.8vol%である。また、インプラント固定のための溶接期間を短縮する目的で、細胞のポア内への浸入を促進するためにポア内部をCaPコーティングする研究開発も積極的に行われている13)。

3. 水素処理による高融点金属粉末の創製

高融点金属、高融点合金、高融点金属間化合物の粉末は高温熟成材料用、電子工業用、化学工業用素材として多くの分野で使用されている。粉末の製造には、ガスアトマイズ法、回転電極法、物質増殖法、水素化-脱水素法、化学的析出法などが用いられている。ガスアトマイズ法、回転電極法は高融点合金以外の合金の粉末製造には最も一般的に広く採用されているが、粉末が高くなると技術的な困難を伴うことが多い、また大量で高価な装置を必要とする場合が多い。さらに、プロセス中に不純物の汚染が生じやすい。これに対し、水素化-脱水素法は、金属あるいは合金系の選択と水素化処理条件の設定を適切に行えば、簡便なプロセスで清浄な粉末を効率的に製造できる。

ここでは高融点材料として注目されているNbCr/3vol%Nブ固溶体in-situ複合材料およびNb3Al/Nb固溶体in-situ複合材料を具体例として取り上げる。Nb-Cr系2元状態図における低温側での平衡相は Nb固溶体、 NbCr2 (Laves相)、Cr固溶体の3相である。状態図を参考にしながら、単相あるいは2相合金をAr+3%H2雰囲気中でアーク溶接した後、ボタンが冷却されるのを待って、チャンバー内のガスを脱水素して置換すると、析出した相に依存して、アーク溶接したボタンが自己焼結的に破壊し、保持時間の経過とともに微粒化が進行する10)。微粒化する組成ではNb固溶体（Nbs）とNbCr2との2相合金のみである。Nbs / NbCr2 2相合金の合組成、NbsとNbCr3の体積率を表1に示す10)。2相合金の中で最も顕著な微粒化が進行したのは、Nb-13CrとNb-28Crで、水素化とともに激しい破壊と微粒化が起こり、50μm以下の粉末が生成する。これに対してもNb-50Crでは大部分の粉末が500μm以上である。

図11に水素処理により粉末化したNbs/NbCr22相合金のSEM写真を示す10)。粉末化の途中で採取した球形粒子の外観と断面のSEM写真を図12に示す10)。

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Nb content (vol%)</th>
<th>Cr content (vol%)</th>
<th>Nbs (vol%)</th>
<th>NbCr2 (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-9Cr</td>
<td>90.7</td>
<td>93.2</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>Nb-13Cr</td>
<td>87.4</td>
<td>126.3</td>
<td>94</td>
<td>6</td>
</tr>
<tr>
<td>Nb-28Cr</td>
<td>72.3</td>
<td>27.7</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>Nb-45Cr</td>
<td>55.2</td>
<td>44.8</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>Nb-50Cr</td>
<td>49.8</td>
<td>50.2</td>
<td>31</td>
<td>69</td>
</tr>
<tr>
<td>Nb-55Cr</td>
<td>45.3</td>
<td>54.7</td>
<td>12</td>
<td>88</td>
</tr>
</tbody>
</table>

図11 アーク溶解炉内での水素処理で粉末化したNb-50%Cr(a)とNb-28%Cr(b)
水素吸収にともない、オニオン状クラックが発生し、表面層が砕れ落ちてフレーク状の粉末ができる過程が観察される。水素処理により粉末化した後、格子定数をXRDで測定すると、NbCr2の格子定数には全く変化が認められないが、Nbs相の格子定数には24-38%の格子膨張が観察される。2相以上の相がピーク、たとえば水素化物のピークなどは検出されない。以上の結果から、水素処理によるNb-Cr合金の粉末化は、 Nb固溶体の表面からの水素吸収によって格子膨張し、 NbCr2と Nb固溶体の界面に応力集中が発生するため、界面あるいはNbCr2それ自身内に破壊クラックが発生することにより起因すると考えられ、脆性的なNbCr2相の存在が重要な役割を演じている。

Nb-Al 2元合金においてもエアーコレシスの水素処理によってNb-Cr合金と同様な自己崩壊的粉末化が観察されている。この系ではNb3Al、Nb5Al3、NbAlの3種類の金属間化合物が存在し、室温で水素を吸収するのは、Nb固溶体、Nb3Al、Nb5Alである。粉末化によって粉末化するのは、 Nb固溶体 / Nb5Al 2相合金と Nb3Al / Nb5Al 2相合金であり、 Nb固溶体とNb3Alに水素処理後格子膨張が観察されたことから、粉末化のメカニズムもNb-Cr合金と同じであると推測される。

水素吸収合金の特性評価に使用されるPCT装置（Sieves-type）を用いることにより、水素処理中に起こる破壊を検出できる。図13はNb-16at.%Al（Nbs相）と Nb-28at.%Al（Nb5Al相）の水素吸収 - 放出特性をPCT装置で60℃において測定した結果で、いずれの合金においても水素圧の上昇とともに吸収される水素量が急激に増加するが、ある臨界圧で不連続的に水素量が急激に増加している。水素圧を低下する過程では不連続は現れない。これに対して、Nbss単相合金では大きな水素吸収を示すにもかかわらず、水素吸収 - 放出線図には不連続は見られない。水素吸収 - 放出特性を測定した後、試料ホルダーから試料を取り出し観察すると、前者では粉末化が起きているのに、後者には変化が見られないことから、水素吸収 - 放出線図に現れる不連続は、水素吸収による破壊によってできた新生破面から急激に水素が吸収されることによると解釈できる。水素処理で作製した粉末は浸して洗いため、さらに酸粉化するためには数分間のポールミル処理を行えばよい。その後、真空中で加熱して脱水素処理することにより、清浄な粉末が得られる。

図12 水素処理中粒子の外観（a）および切断面（b）を示すSEM写真

図13 Nb-16at.%Alおよび Nb-28at.%Alの水素吸収 - 放出曲線
図14 水素処理プロセスを示す模式図

以上の結果から明らかのように、水素処理で簡便に粉末を作製するためには、合金が単相合金であること、水素吸収能の高い構成相があること、脆性な構成相があることが不可欠である。それでは次に、単相金属あるいは単相合金を水素処理により粉末化する方法について考えてみる。実験に使用したのは純Taである（現在コンデンサー用材料として電子産業で大量に使われている）粉末を原料をNa還元で作製されていとする。純Taインゴットを80%以上冷間圧延した1mm厚の板から5mmφの円盤を切り出して試料とした。図14に示すような4種類の水素処理を施し、処理後の形状変化を観察したところ、水素処理でオニオンクラックが導入されるのは、水素処理を高温（1200℃）行い、そのまま水素中で低温まで冷却した場合（Process A）で、特に冷却途中で低温で水素中保持し、Ar中で冷却すると脆化が顕著に現れる（Process D）。水素処理後高温Ar雰囲気に保持してもAr中で冷却すると脆化は起こらない（Process B, C）。高濃度水素中処理が必須なのは表面炭化物の還元により水素の表面からの拡散吸収が促進されるためである。低温水素中処理が効果的なのは、図15に示したTa-Hの2元状態図から分かるように、Ta中への水素の固溶量が温度低下とともに急激に増加するためである。ここで重要なのは、61℃以下の温度で低下すると水素化物が生成することで、水素吸取によりTa-H固溶体の体積膨張すると、水素化物がクラック発生の起点となると考えられる。図16はオニオンクラックと表面に観察されるバンド状水素化物で、TEM観察によればこの水素化物はTa_{2}Hである（図17）。単相の純Taであっても、水素吸取によって生成した水素化物が脆性相として働き、前述した脆性相を含む2相合金Nbss/NbCr_{2}, Nbss/Nb_{5}Al, Nb_{2}Al/Nb_{3}Alと同じようなメカニズムで脆化することが分かる。純Taの場合には水素処

図15 Ta-H 2元状態図

図16 水素処理した純Taのオニオンクラック（a）とバンド状水素化物
理だけでは自己崩壊的に破壊することはなく、オニオンクラックの形成とともに反応は停止する。しかし、この状態で試料は極めて脆性であり、水素処理後5minポールミルすることにより、数ミクロンの微粉を得ることができる。

図17 水素処理した純Taの高温分解能TEM像とTa₅Hの構造

4. 超高温耐熱材料の創製と表面コーティング技術の開発

エネルギー問題解決に向けて超高温での使用を目的にした高機能合金基複合材料の研究開発が精力的に行われている。高温強度と室温靭性を高レベルで図させるための複合材料としていくつかのin-situ複合材料が提案された。代表的な合金系としてZrC/Moss教授、Nb₅Si₃/Nbss教授、Mo₅SiB₃/Moss教授が開発され、高温高強度と室温靭性が著しく改善されつつある。しかしながら、これらのin-situ複合材料は耐酸化性に劣るため実用化の障害となる。耐酸化性改良のためのコーティング技術の改良が着実に進展している。

Mo(Si,Al)ₓが優れた耐酸化性をもつことから、これをコーティング材に使用しようとすると、まずNb合金との熱膨張係数差をできるだけ小さくするのは重要である。そのためにHfB₂とMo(Si,Al)ₓの混合粉末を焼結して製造質量比約20vol.%HfB₂であることを確かめておこう。Mo(Si,Al)ₓとHfB₂の焼結体とNb合金との間に拡散抑制相としてAl₂O₃が最適であることを明らかにした。これらの予備実験の結果に基づいて、図18のようにして熱封入法によりNb合金をMo(Si,Al)ₓとHfB₂の焼結体でコーティングすることにより、1400℃において優れた耐酸化性が得られた。Nb合金の種類によって熱膨張係数は変化するが、コーティング材のMo(Si,Al)ₓとHfB₂の熱膨張係数の異なるAINやSiCを混合することによって係数差が小さくなるように調整することができる。

ZrC/Mossの耐酸化コーティング材としてはMo₅Siₓ、Mo₅Siₓ、Mo₅Siₓの3相カルナー合金で調べられている。3相合金をアーク溶接した後、機械的に研磨して作成した粉末をZrC/Moss基板に減圧プラズマ溶射することにより、ナノオーダーの粒径からなる皮膜を生成できる。このコーティングにより1400℃における優れた耐酸化性が確認された。

図18 熱封入法によるNb合金の耐酸化性コーティング処理の模式図

4. おわりに

人工関節用インプラント（ステム）のように繰り返し応力の加わる場合には、疲労強度が不十分な粉末成形品は不向きと言われていた。しかし最近、インゴッ
トを直接して作製したステンの表面に球状粉末をコーティングして表面のみをポーラス化し、生体との密着性を高める技術を開発されて以来、このようなステンが主流になりつつある。さらに次世代のステンとして、生体組織の侵入を促進するような物質をあらかじめ表面ポーラス層のポア内の粒子表面にコーティングしてから生体に浸入し、治療期間を短縮しようとする研究も盛んに行われているようになった。粉末プロセッシング技術を導入することにより、従来の材料に無かった新たな機能を付与された好例の例と言える。粉末プロセッシングは新規な材料創製を可能にするだけでなく、既存材料の高機能化を可能にするプロセッシングとして今後益々注目されるものと思われる。

参考文献
9) T. Matsuzawa et al., in press.
11) M. Kaneshira et al., unpublished work.
21) S. Semboshi, T.J. Konno, N. Masahashi and S. Hanada, to be published.

Caption
Fig. 1 SEM micrographs of commercially pure Ti compacts sintered at (a) 1300° C for PREPd powder with an average size of 374 um and (b) at 1100° C for gas atomized powder with an average size of 65 um.

Fig. 2 Optical micrographs in a section of porous Ti compacts sintered at (a)(b)(c) 1300° C with no applied stress and at (d)(e)(f) 900° C under applied stress of 10 MPa, where initial powder sizes are 374 mm for (a) and 189 mm for (c).

Fig. 3 Relation between Young’s modulus and porosity of porous Ti.

Fig. 4 Relation between bend strength and porosity of porous Ti.
Fig. 5 Partial phase diagram of Ti-Nb binary alloy system and corresponding elastic modulus. Inserted electron diffraction patterns a, b, c and d are taken from compositions a, b, c and d in β Ti alloys after quenching.

Fig. 6 Bond order (Bo) dependence of Young's modulus in b TiNbSn alloys.

Fig. 7 Relation between Young's modulus and porosity in β Ti-Nb-Sn alloys.

Fig. 8 Relation between yield stress and porosity in β Ti-Nb-Sn alloys.

Fig. 9 Optical micrograph of cell growth on porous Ti compacts.

Fig. 10 Optical micrograph in a section of a porosity-graded porous Ti compact.

Fig. 11 SEM micrographs of (a) Nb-50%Cr and (b) Nb-28%Cr hydrogenated in an arc melting chamber.

Fig. 12 SEM micrographs in (a) appearance and (b) a cross section of a hydrogenating particle.

Fig. 13 Hydrogen absorption and desorption curves for Nb-16%Al and Nb-28%Al.

Fig. 14 A schematic drawing of hydrogenation processes.

Fig. 15 Phase diagram of Ta-H binary alloy system.

Fig. 16 SEM micrographs of hydrogenated pure Ta showing (a) octagon-like cracks and (b) hydride.

Fig. 17 TEM micrograph of hydrogenated pure Ta and structure of Ta$_5$H formed in pure Ta.

Fig. 18 Schematic diagram of oxidation resistance coating treatment of Nb-alloy by the pseudo HIP method.
ナノ粒子の合成と機能化、実用化に向けて
—NEDOナノ粒子プロジェクトの研究成果—

拡大大学大学院 工学研究科

奥山 喜久夫

はじめに

最近のナノテクノロジーに対する関心とともに、ナノ粒子材料の合成技術とその応用の重要性が高く認識されるようになり、ナノ粒子に関する記事を新聞、雑誌などで目にすることも多くなってきた。ナノ粒子材料は、一般には0.1 μm（100nm）以下の超微粒子材料のことを指しており、比表面積が非常に大くなるため、固体でありながら、表面の特性が固体特性に大きな影響を与えるようになる。ナノ粒子を用いた新材料には主に以下のような機能向上が期待される。①デバイスの超小型化、②機能の高密度化、③メモリ機能の向上、④比表面積の増加による高機能化、⑤エネルギーの散逸による耐久性、耐候性の向上、⑥高感度化、⑦量子サイズ効果。

ナノ粒子の機能を十分に発揮させるためには、ナノ粒子の大きさが決まっており、結晶構造が良好で、さらに凝集していないことが重要となる。ここでは、1. ナノ粒子合成法の現状、2. ナノ粒子の凝集および分散の制御、3. ナノ粒子を用いた機能材料への応用について紹介する。

1. ナノ粒子合成法の現状

ナノ粒子の合成法は、粒子を合成する手法によって大きく固相法、気相法、液相法に分類される。固相法では小粒径化が100nmまでが限界であり、粒子径の小さい機能性ナノ粒子の合成には、気相法と液相法が有効である。気相法では、高速蒸気の冷却による物理的凝縮法（PVD法）および気相化学反応による生成合成法が用いられる。

図1 NEDOの「ナノ粒子の合成と機能化技術」プロジェクトの概要
法（CVD法）に大別される。気相法には不純物が少なく高純度度かつ粒子径が小さい粒子が製造できることから、現在広く用いられており、特に携帯電話などに用いられるセラミックスコンデンサー電源電極用ナノ粒子を、CVD法で製造された高純度のものが用いられている。しかし、多成分系材料の製造には、原料の選択が難しいために、組成の制御されたナノ粒子の合成は容易ではない。

一方、溶液中でナノ粒子を合成する相溶法では、多成分系材料を合成する際の原料を溶液中で調製できるので分子レベルで原料の混合が可能であるという利点がある。相溶法には共沈法、アルコキシド（ソル・ゲル）法、逆ミセル法、噴霧穏分解法（液滴－粒子転換プロセス）などが提案され実用化されている。最近では噴霧穏分解法が注目されていて、比較的装置が単純で、ワンステップによる凝集体のない高純度性のナノ粒子製造が可能である。

平成13年より5ヵ年間、NEDOの材料ナノテクノロジープログラムの一環として「ナノ粒子の合成と機能化技術」プロジェクトが開始した。図1はプロジェクトの概要を示す。プロジェクトの研究課題は、ナノ粒子の新規合成法の開発、ナノ粒子を安定化させるための表面修飾技術、ナノ粒子の表面機能化および配列技術、機能素子化技術である。

「ナノ粒子の合成と機能化技術」プロジェクト研究では、ナノ粒子の気相合成法および液相合成法による製造を検討しているが、これまでに合成された各種のナノ粒子の顕微鏡写真を図2、図3および図4に示す。大きさが数十ナノメートル以下の各種のナノ粒子の合成が可能となった。そしてデバイス、磁気メモリ、光学デバイスとしての応用を目指し、粒子の合成法、評価法、特性発現の機構を含め活発に研究開発が進められている。また表1に、現在企業より入手可能なナノ粒子の一覧を示す。
表1 企業より入手可能なナノ粒子一覧

<table>
<thead>
<tr>
<th>ブランド名</th>
<th>製品名</th>
<th>材料</th>
<th>直径（nm）</th>
<th>品番</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

日本製

2. ナノ粒子の凝集および分散の制御

現在のデバイス基板や材料等へナノ粒子を適用する場合、既存材料に比べ大幅な機能の向上が期待されている。しかしながら、実際にはナノ粒子のむしろ表面活性性が非常に高いため、ナノ粒子の分散安定化は必要不可欠である。そこで、ナノ粒子の機能を保持しながら分散させる一つの方法としてナノ粒子の表面修飾技術が非常に重要となる。

図5(a)に示すように、ナノ粒子の表面にさらに小さいナノ粒子を付着させると、あるいはナノ粒子の表面に吸着を促進する化学反応等によってポリマー等をコーティングする等の表面修飾に関する研究が行われている。コーティングする物質を選択することで粒子
間に働く分子間力等の引力を押さえるように工夫でき、凝集を抑制できる。また、有機化合物による表面修飾では、合成後のパラメータ整合化、導入化および機能の維持発現において、表面修飾する有機化合物をそれぞれの工程に従って用いることによって更なる機能的配列効果が期待される。すなわち、表面修飾剤を交換するcap交換技術が必要となる。図5(b)にはナノ粒子を高分子、セラミックスに分散させたナノ粒子コンポジットが提案されている。ナノ粒子のコンポジット化は、ポリマーへのナノサイズ微粒子の分散による新しい発想に応用されている。しながらナノサイズ効果の発現が期待されるシングルナノ粒子の発光体の機能性を分離化については現在研究段階であり、微小ピースを用いた新規分離方式型分離機の使用や粒子合成時の表面修飾の進歩などによりさまざまなナノコンポジットの可能性が示唆されている。

3. ナノ粒子を用いた機能材料への応用

ナノ粒子の応用に関しては現在、工学の分野だけでなく、生物、化学、物理、化学など、新たな学問分野として大きな関心が寄せられており、ナノ粒子の新規物理化学特性の把握とともに、機能材料分野に向けた共通の技術開発することが重要となっている。表2に電子情報分野でのナノ粒子適用例を示す。

表2 ナノ粒子の適用が検討されている電子材料の一例

材料系	形態	特性など	適用例
Au	dot	compound black/RENM	single-electron transistor
Ag	array	plasmon	リゾン
Ag	packed	ボリマーおよび微粒子表面	ヤドロマスク
Co	packed/polycrystal	低コスト化	配線材料
Si	dot/array	発光効果を利用	hologram plate
Co	array	spin-dependent current	不確定性メモリー
CoPt	array	ferromagnetic	フェルミアン
FePt	array	ferromagnetic	MPAM
FePtFe203	array	magnetoelastic	チューパルプ
FePtFe204	array	composite magnet	フェルミアン
FePtBaTiO3	array	ferroelectric	FeRAM
FePtZrTiO3	array	ferroelectric	FeRAM
CuSe	dot	compound black/RENM	single-electron transistor
CuSeZnS	dot	PL, EL	光学グリッド
CuSeZnSeZnS	array	PL, EL	optical storage
TiO2	porous	透明導体型	太陽電池
Zno	array	ferromagnetic	spintronic device
ZnS:In	packed	PL, EL	電光体
Sn	packed	使用酸化物	Liイオン電池
Sn	packed	使用酸化物	Liイオン電池
LiMn2O4	packed	使用酸化物	Liイオン電池
ITO	packed/polycrystal	低コスト化	光感度電極

3.1 メソポーラスシリカ材料

ポーラス構造体の製造に関する研究は、非常に注目されており、サイエンスおよびエンジニアリングの分野で重要な研究課題であり、多くの研究が報告されている。図6(a)に、メソポーラス構造をもつシリカ微粒子の製造法の一例を示す。この方法は、従来の方法に比べて、非常にシンプルであり、自己組織化を利用しているので短時間での微粒子の製造が可能であると考えられる。図6(b)に、シリカのナノ粒子とPSL粒子を混合させて合成した微粒子のSEM写真を示す。

また、ポアス構造体の製造と同様に、シリカのナノ粒子とポリスチレン樹脂（PSL）粒子の混合溶液を用いて、ディップコーティング法により規則的に配列したポーラスフィルムを製造したSEM写真を図6(c)に示す。これらのポーラスフィルムはフォトニックバンドギャップをもち、フォトニック結晶や低誘電体材料として光学素子への応用が期待される。

最近ではFePtのポーラスフィルムの創製に関する研究が報告された。FePtは一概的には磁性体材料として知られているが、触媒としての機能も持ち合わせており、ポラス体にすることで表面積を大きくすることができる。図7にFePtのポーラスフィルムのSEM写真とその磁気特性を示す。このようにポラス材料の応用の幅は広く、最新の医療として研究されている。
3.2 コンポジット材料

ゾルゲル法などによるナノ粒子の合成は、それほど現在困難ではないが、合成直後に凝集しがちなためナノ粒子の機能が消失する。この製造直後のナノ粒子の凝集を防ぐために、非凝集性のナノ粒子を混合させて噴霧液とし、噴霧乾燥させ、図8(a)のようにナノコンポジット粒子を製造することが試みられている。図8(b)に、酸化亜鉛ナノ粒子/シリカナノ粒子のコンポジット粒子の磁性特性を示す。長時間経過しても磁特性が変化しないことがわかる。図8(c) (d) (e) (f) などはシリカのコロイド溶液を噴霧乾燥法によって

図8 (a) 自己組織化を利用したメソポーラス構造をもつシリカ微粒子の製造法
(b) ポーラス粒子SEM写真 (c) ポーラスフィルムSEM写真

図7 磁性体ポーラスフィルムSEM写真と特性評価 (a) FePtナノ粒子と (b) 規則的なポーラスFePtフィルム
図8 噴霧乾燥法によるナノコンポジット粒子の合成（a）、（b）及びシリカナノ粒子コロイドの噴霧乾燥法により製造された粒子のSEM写真
シリカ粒子の平均径：c) 4 – 6 nm, d) 40 – 60 nm, e) 80 – 100 nm

図9 ナノ粒子分散型蛍光性ポリマー-電解質のX線回折および蛍光特性のLiOH濃度依存性
LiOH・H₂O濃度：(a) 0.13 g, (b) 0.53 g, (c) 1.03 g

製造した粒子のSEM写真である。
さらに、シリカなどのナノ粒子をポリエチレン、ポリプロピレン、エポキシなどの種々の樹脂中に均一に分散させると相熟、強度、耐熱性が向上すると共有、ナノ粒子の光透過性が高いため透明樹脂となり光学特性が顕著に改善される。最近、ポリマー中に酸化亜鉛のナノ粒子が分散した電解質ポリマーの合成が報告されている14,15)。製造された酸化亜鉛粒子は、大きさが数nmで、かなり均一に分散し、粒子のサイズにより蛍光波長が、濃度により蛍光強度が変化することが明らかとなっている。図9はX線回折、蛍光強度および励起強度のLiOH濃度依存性を示したものである。LiOH濃度を高くすると、結晶性が高くなっていることがわかる。相対蛍光強度は、LiOH濃度を高くする(a→c)と蛍光波長は低波長側へシフトし、励起強度もLiOH濃度を高くすると、励起波長は低波長側へシフトした。これより、LiOH濃度を高くするとポリマー中の酸化亜鉛の粒子径は小さくなることがわかる。電子顕微鏡での観察によりポリマー中の酸化亜鉛の粒子径は5〜7nmであった。

しかし、ナノ粒子を直接ポリマー中へ機械的に分散させることは非常に困難であり、これを実用化するための装置開発が必要となる。最近、従来の混練装置を開発することでナノ粒子を母材などに均一に分散させ
図10 溶融混練法によるナノ粒子の均一分散化
(a)従来の装置で分散したフィルム、(b)新しく開発された装置で分散したフィルム

た透明な複合樹脂材料（ナノコンポジット）の作成に成功したことが報告された。（図10）(30) 図10(b)に本方法で得られた樹脂フィルムの外観写真を示すが、従来の装置で分散したフィルム図10(a)よりも明らかに透明であり、ナノ粒子が樹脂中に均一分散していることが分かる。このように工業化が容易な手法で、ナノ粒子を強化材として用いた透明樹脂ナノコンポジットなどへの展開や、ナノ粒子の選択による透明樹脂の屈折率や、復屈折の制御など、光学材料への応用が期待される。

また、シリカやチタニアのナノ粒子をカーボンプラック、顔料をノーマルカラーの上にコーティングするハイブリッドナノ材料の合成も可能となっている。

3.3 場光材料

場光材料であるZnS:MnやY2O3:Euに関して、粒子径が10nm前後のナノ粒子の合成が噴霧熱分解法により可能となり、結晶性が高く場光強度も極めて高いことが示されたため、さらにポリマー中に均一に分散させると透明ポリマー中からの場光の発生が可能となり、白色場光材料など各種の場光材料への応用が可能と考えられる。各種の有機EL材料と無機の場光体ナノ粒子のコンポジット化は、高い場光強度を持つ有機EL材料の開発に役立つと期待されている。さらに、Cu2Seナノ粒子を塩酸により蒸発させ、半導体ナノ粒子を配列膜を形成したところ、場光特性に光記憶性が発現することが発見され、光メモリ材料としての応用も期待されている(31)。

3.4 ナノドット材料

図11に示すようにPSS粒子を含むコロイド溶液を蒸発させ、乾燥させると自己組織化されたPSS膜が製造される。この蒸発上にスパッタリングにより各種の金属、金属酸化物などのナノ粒子を堆積させて、その後低温で加熱すると、PSS粒子が蒸発し、ナノドームが形成される。さらに加熱すると焼結によりドームがドームへと変形し、ナノドットが形成され、様々な応用が考えられている(32)。

3.5 ガスバリア材料

アスペクト比の高いモンモリロナイトのようなクレーナノ粒子を材料に対して平行に配列することによりガス分子が通過するパスが短くなり、ガスバリア材料として利用される。PA、PET、PVC、EVOH、PANなど元々ガスバリア性の高い樹脂と併用することにより高密度ガスバリア性が発現される。特にO2
図11 自己組織化された全電ナノドームおよびナノドームの製造

透過抑制性に優れ、電気材料としては優れた導電性などの電気特性との両立てで適用が期待される。

3.6 磁性誘電体材料
超小型・指向性・帯域アンテナ・高帯域技術プリント基板を実現するには、大きな比誘電率を有する磁性誘電体材料の新開発が期待されている。比誘電率を上昇させ、特性抵抗を上昇させることにより実用電気電子装置用途の発展を含むデバイス等、さらに、磁性誘電体材料の設計である磁性誘電体材料の新開発が期待されている。ナノ粒子の効果により、シングルナノFePtナノ粒子の大量合成技術開発を行っている。

3.7 導電性ベースト
現在、帯電電極などの電子製品の製造においては、通常メキシが用いられているが、帯電による環境問題のため、代替材料として導電性ベーストをこの分野に活用して起こされている。現在の導電性ベーストではベースト中の表面修飾剤が、それぞれの粒子同士の接触を阻害し高抵抗になる。また粒子径が大きいと

この問題があった。しかし最近になり低及び銅のナノ粒子を原料としたナノベーストが開発され、導電性ベーストの実用化への期待が大きく高まった。この場合、約200℃程度の低温処理で被覆被が収縮して粒子を接近させた後、蒸発したナノ粒子自身はその低反発性を利用して融解、分散する。これにより低温処理にて低抵抗率のナノサイズの回路が可能となる。

おわりに

ナノ粒子は、エレクトロニクス分野だけでなく、医薬、バイオ産業など多くの分野で興味深い材料として研究がなされているが、数年後にはさらに多くの分野への応用が期待される。特に導電性ナノ粒子の合成は、誘電合成法や気相合成法で可能となりつつあるが、今後は、これらのナノ粒子の表面修飾、分散技術の向上、さらに、塗布・乾燥の技術や、ポリマー中に均一混合する等、ナノ粒子のもつ機能性を発現させる技術の開発が重要となってくる。ここでは、ナノ粒子の合成およびその電子・情報材料、光機能材料、製造材料などの応用に関する研究の一端を紹介したが、また、ナノ粒子の特性を有する各種のデバイスを応用して製品化するためのプロセス開発が重要である。さらに製品の開発した技術が、コロイドとエアロゾルの科学・工学および新規なナノオーガー-レーベルの各種計測技術の開発を検討していく必要がある。

引用文献
spray pyrolysis method (a-f) and low-pressure spray pyrolysis method (g-i); 4
Fig. 4: SEM and TEM images of nanoparticles prepared via liquid phase route. Sol-gel method (a,b,e), low-pressure spray pyrolysis method (c), polyol reduction method (d), hot-soap method (h), flame spray pyrolysis method (f), liquid phase reduction method (g)); 4
Fig. 5: Nanoparticles surface modification and nanocomposite.
Fig. 6: (a) Schematic of the preparation of ordered mesoporous silica particles. SEM images of (b) ordered porous particles and (c) ordered porous film.
Fig. 7: SEM images of the ordered porous magnetic film and the magnetic characteristics of (a) FePt nanoparticles and (b) ordered porous FePt film.
Fig. 8: Schematic of the preparation of nanocomposite particles by a spray drying method (a) and their characteristic (b). SEM images silica particles prepared from the nanoparticles colloid using spray drying method: (c) 4-6 nm, (d) 40-60 nm and (e) 80-100 nm.
Fig. 9: Photoluminescence and X-ray diffraction of electrolyte phosphor nanoparticles dispersed in polymer as the function of LiOH concentration used. The LiOH concentrations were (a) 0.013 g, (b) 0.03 g and (c) 1.03 g, respectively.
Fig. 10: Dispersion of nanoparticles into a resin using a twin screw extruder method. Overview of the nanocomposite film prepared by (a) a conventional method and (b) the present method.
Fig. 11: Preparation of a self assembly metals nanodots and nano-domes.
Table 1: List of nanoparticles available in the market.
Table 2: Example of nanoparticles for electronics materials applications.
カーボンナノチューブ添加による高機能セラミックスの開発
—摺動部材としての導電性窒化ケイ素—

横浜国立大学大学院　環境情報研究院
米屋　勝利・多々見　純一

1. はじめに

窒化ケイ素（Si₃N₄）は人工結晶として19世紀の後半に初めて合成された。結晶構造は六方晶系α型とβ型の2種類の多形を持ち、共有結合性に富む化合物である。1気圧下では1900°C前後で分解することから、耐熱性・耐食性、高硬度、低膨張係数、高熱伝導性などを特徴としている。導体化ケイ素は電気特性も質で、サファイアの発見以来、優れた焼結助剤としてのY₂O₃を始めとする希土類化合物の発明、高純度で微細な熱処理成Si₃N₄粉末の導入、高圧気圧焼結法（GPs）の発明等によって高強度で緻密な焼結体の作製が可能になった。焼結助剤の歴史的な発展は目的によって異なるが、Y₂O₃系、Y₂O₃-Al₂O₃系が主流であり、ここで主題とする摺動部材に用いられる窒化ケイ素に関しては、Y₂O₃-Al₂O₃-AlN系、Y₂O₃-Al₂O₃-TiO₂-AlN系へと発展させて今日に至っている。その歴史的な流れを表に示しておく。

このようにSi₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN系窒化ケイ素を摺動部材として実用化されると応用分野が拡大する一方で、もし、今後の発展は焼結ケイ素特有の優れた性質を有するものの、作業に静電気を帯びるためのガスが多く当たり、電子機器や信号を含む精密機器の信頼性を低下させることの懸念から応用範囲は限定されてきた。われわれは、このほど発表のカーボンナノチューブ(CNT)を窒化ケイ素焼結体の転相に導入することによって導電性を付与することに成功した。本報では、最初に摺動部材としての実用材料を紹介し、それら発表した導電性窒化ケイ素について述べる。

Development of CNT-Dispersed High Performance Ceramics
— Electrical Conductive Silicon Nitride as Bearing Materials—
Katsunori KOMEYA, Ph. D.
横浜国立大学大学院　環境情報研究院
名誉教授　神崎博士
Emeritus Professor, Specialized Professor,
Graduate School of Environment and Information Sciences,
Yokohama National University
連絡先：〒226-8501
E-mail：komeya@yru.ac.jp

Jyunki TATAMI, Ph. D.
同研究員 助教授
Associate Professor,
Yokohama National University
E-mail：tatami@yru.ac.jp

表1 窒化ケイ素のベアリング応用のための技術開発経緯

<table>
<thead>
<tr>
<th>Year</th>
<th>Topics</th>
<th>Content</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>Material</td>
<td>Si₃N₄-Y₂O₃</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>Material</td>
<td>Si₃N₄-Y₂O₃-Al₂O₃</td>
<td>Pioneered patent</td>
</tr>
<tr>
<td>1973</td>
<td>Material</td>
<td>α-Si₃N₄-Y₂O₃-Al₂O₃</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>Material</td>
<td>α-Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN</td>
<td>Standard composition for bearings</td>
</tr>
<tr>
<td>1984</td>
<td>Evaluation</td>
<td>Excellent durability for bearing applications</td>
<td>Higher durability than Si₃N₄</td>
</tr>
<tr>
<td>1984</td>
<td>Product</td>
<td>First application production</td>
<td>Machining spindle bearings</td>
</tr>
<tr>
<td>2001</td>
<td>Material</td>
<td>Role of TiO₂</td>
<td>Densification & strengthening</td>
</tr>
<tr>
<td>2004</td>
<td>Material</td>
<td>CNT Doped Si₃N₄</td>
<td>Electrical conductivity Si₃N₄</td>
</tr>
</tbody>
</table>
2. 耐摩耗材料としての窒化ケイ素

2.1 開発経緯

窒化ケイ素のペアリング材としての実用化はSi₃N₄-Y₂O₃-Al₂O₃系を基本組成とし1984年に種特充—光学工房のグループによって初めて達成された。このセラミックペアリングの開発は、金属製部材材に適用しているストリクションの軸がり疲労試験法によって性能が評価され、Si₃N₄-Y₂O₃-Al₂O₃系をホットプレス（HP）した焼結体がSUJ-2軸受鋼を破壊した軸がり疲労特性を示したことによる（図1）。このHP材はボールへの機械加工仕上げが必要であるためコスト面では不利であった。しかし、金属にはない優れた特性を具備していることから、工作機械用スビンドルに選用され実用第1号として実用化された。

周知の通り、ペアリング材料としては多くの機能が同時に付与されることが求められている。図2にペアリング材料が具備すべき特性項目を示しておく。このように、窒化ケイ素が単に高強度で高い耐熱性をもつことだけでなく、低摩擦係数、非磁性、耐熱性、耐食性、耐摩耗性、高硬度高弾性など多くの優れた特性を同時的に付与していることが重要である。このことは、窒化ケイ素自体が金属材料に比べてよりシナジー的であることを意味する。とくに、窒化ケイ素の優れた耐摩耗性は部材自体の長寿命化と優れた低摩擦・高伝導性によって、システムとしての性能を安定化させ、且つ長時間の耐久性を保持されることから、システム自体の長寿命化をも可能にする。このことを、図2に示すように、省資源に寄与し、微細化堆積粒子の排出が少ないことによる環境保全、さらには省エネルギーにつながることとなり、今後の社会において重要な一翼を担うことになるであろうと筆者される。このことが、今後とも窒化ケイ素が多くなシステムを支える付加価値の高い耐摩耗材料として期待される所であるだろう。

上記に示した要求性能を目標にして開発が進められ、汎用性の高い優れた特性をもつ耐摩耗材としてSi₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN系を基盤組成とする窒化ケイ素系材料が開発され、今日標準材料の一つとして広く利用されている。

2.2 Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN系材料

ペアリング等の潤滑部材に用いられる代表的な窒化
ケイ素系材料はY2O3とAl2O3の焼結助剤との配合をTiO2とAINを添加して作製される。われわれは、このTiO2とAINの添加がSi3N4の焼結挙動や相変化、焼結体の微構造に及ぼす影響について研究を進めてきたのでその概要を以下に述べる。

通常のSi3N4-Y2O3-Al2O3系にTiO2とAINを同時に添加した場合には、図3に示すように緻密化が加速され、1600〜1700℃の低温でも相対密度95%以上の緻密化が達成されることが明らかになった。このことは、緻密化を可能にする温度域が広いことを意味するものであり、焼結体の品質のパラッキを抑制するのに有利であることを示唆する結果である。この組成系においては、添加したTiO2は1300℃以下の低温すなわちTINに変化することが確認されている。一方、TiO2-AIN系を添加した場合でもα-Si3N4は焼結温度の上昇に伴って高温で安定なβ-Si3N4へ転移し、微構造の主に柱状結晶がSi3N4にAlとOが固溶して著-Sialonとして存在する。この場合の焼結相はTiO2-AIN無添加系と添加系では異なるが、柱状結晶粒の大きさと形態については両者間の差はほとんど認められなかった。

図4にTiO2/AIN=5wt%/5wt%の焼結体のTEM写真を示す。焼結中に黒い球状粒子が存在している。EDS分析の結果、これらの粒子はTiとNから構成され、X線回折の結果を考慮すると、球状粒子はTINであることが確認されている。TIN粒子の粒径や形状は焼結温度にほとんど依存していないことが観察されており、添加したTiO2の粒径が数百nmであることを考慮すると、TIN粒子は添加したTiO2の粒径を保持したまま生成したものと推測される。さらに、母相と粒界のいずれかいくつかが焼結されたことから、添加したTiO2はすべてTINとして存在していることが分かった。

熟処理的には、TiO2はAINと反応してAl2O3に、Si3N4と反応してSiO2に変化し、自らはTINになるものと推測される。これらの反応により、焼結過程で粒界相の組成が変化し、焼結体の物性に影響を与えるものと考えられる。しかし、上述した低温での原封の緻密化の達成を説明するのは不十分であるので、現在焼結速度解析や初期焼結における反応をさらに詳細に検討しているところである。

3. 導電性窒化ケイ素

3.1 開発動向

これまで、絶縁体である窒化ケイ素に導電性を付与するいくつかの研究が行われている。その一つは、窒化ケイ素焼結体の粒界にNa⁺等のアルカリイオンを存在させイオン導電性を確保する方法であるが[44]。この場合はアルカリイオンが変化ケイ素の機械特性を低下させてしまう。また、TINやSiC等の導電性物質を
添加することも試みられているが、大量の導電性物質が必要であることから特性を劣化させてしまうなど良い結果は得られていなかった。

ところで、最近新規物質としてCNTが登場した。このCNTはナノサイズで高い導電性、高い弾性率、高強度、高アスペクト比で特徴付けられる魅力ある特性をもっている。このCNTを添加してAl₂O₃を強化する方法が放電プラズマ焼結（SPS）を用いて実施されているが、一般にはCNTが細密化を阻害することが課題となっている。また、Si₃N₄に対してはCNT自体が細密化を阻害すると共に、Si₃N₄や表面層であるSiO₂と反応し、SiCを生成して消減することが問題となってきた。われわれは、ほぼ理論密度に近い細密化を低温で可能にし、CNTの消減を阻止することができる複合化ケイ素を開発のキーやとして研究を開始した。その結果、図3に示すように、先に開発し实用化したSi₃N₄-Y₂O₃-Al₂O₃-TiO₂-AIN組織系がSi₃N₄-Y₂O₃-Al₂O₃系に比べて易焼結性を示すことを利用してCNTとSi₃N₄やSiO₂との反応抑制の可能性を検討した。以下にその結果と成果を紹介する。

3.2 CNT添加導電性窒化ケイ素焼結体の開発

導電性窒化ケイ素焼結体の開発は以下の実験に基づいている。

2wt%Si₃N₄+5wt%Y₂O₃-3wt%Al₂O₃系に外付けで5wt%TiO₂と5wt%AINを加えた系を基体系となした。一方、CNTスラリーはエタノールと分散剤の混和処理によって調整した。所定CNT量を含むスラリーと上記組成系の粉末を窒化ケイ素製ボット（サイアロンポール使用）に入れ、エタノールと分散剤を加えて混和混合を行った。次いで一旦エタノールを蒸発除去後、バインダーを混和混合しメッシュを通して造粒粉を作製した。各造粒粉をペレット状に一軸

図5 CNT添加Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AIN系焼結体のCNT添加量に対する相対密度の変化：(a) Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AIN系、(b) Si₃N₄-Y₂O₃-Al₂O₃系

成形した後さらにHIP成形して成形体試料を作製した。各試料を窒化ケイ素製ボットに入れて、窒素気流中900℃でバインダーを除去した。焼結方法としてはGPSを標準とし、必要に応じてさらにHIP処理を付加した。また、HIPも使用して実験を行った。

得られた焼結体について、密度測定、曲げ強さ、破壊靭性測定、X線回折による構成相の解析、電気による微構造観察などを行うとともに、CNT添加に伴う導電率の変化、ラマン分光によるCNTの存在状態の解析、さらには微結晶特性評価などを行い、CNTの添加効果を評価し現象を考察した。

4. CNT添加窒化ケイ素焼結体の諸特性評価

4.1 細密化特性

図5にCNT添加量に対する焼結体の相対密度変化を示す。GPSの場合はCNTの添加に伴って密度は一
図7 CNT添加Si_{1/4}N_{1/4}-Y_2O_3-Al_2O_3-TiO_2-AlN系焼結体のCNT添加量に対するX線回折パターン

繊に低下するものの1.8wt%添加までは95%以上の緻密な焼結体が得られている。95%の焼結体をHIP処理すると密度は98%以上に上昇した。一方、HPによればCNT2wt%添加でも95%以上の密度が達成された。このように、用いられた組成系は低圧で緻密化が観察されることが確認された。

4.2 X線回折による構成相

図6に焼結体としてTiO_2-AlNの有無の場合は焼結体のX線回折パターンの比較を、図7にGPSによって作製した焼結体のX線回折結果を示す。図6によれば、構成相はCNT1.8wt%ではα及びβ-Si_{1/4}N_{1/4}からなっているが、それ以上のCNTを添加すると新たにSiCとα-Sialonが出現した。これはCNTが溶解したことを示唆する結果である。一方、HPの場合は、12wt%CNT添加でもCNTを存在させることができた。このことは、次項のSEM観察結果と一致し示されるとと硝化での緻密化によって阻止できることが推定する考えられる。

SiO_2(s,l) + C(s) → SiO(g) + CO(g)
SiO(g) + C(s) → SiC(s) + CO(g)
2SiO(g) + 3C(s) → 2SiC(s) + CO_2(g)
SiN_4(s) + 3C(s) → SiC_3(s) + 2N_2(g)

4.3 微構造観察

図8、図9に代表的ないくつかの試料についての破面のSEM観察結果である。この写真から明らかにように、18wt%CNT、GPS焼結では、AIN-TiO_2添加系ではCNTの残存が認められる。図9によれば、CNT3wt%以上の添加でGPSではCNTが溶媒することが、HPの場合は乾燥のCNT添加でもCNTが残存するのを認める。なお、酸化ケイ素母体は通常の酸化ケイ素と同様な汚染結晶粒と粒状ガラス相からなるものであった。ラマンスペクトルによれば、18wt%添加GPS焼結体及び12wt%添加HP焼結体のいずれにおいてもCNTのスペクトルが観察されている。
うと、緻密化がさらに促進されるため導電率も向上する結果が得られた。以上から、CNTの粒界への残存が可能であれば導電性が期待されその量に応じて導電率が制御できることが確認された。しかし、CNTは凝集しやすいことからこれをいかに均一に分散するかが最も重要な課題であろう。

4.5 機械的特性

代表的なCNT添加量子化ケイ素焼結体の諸特性を表2に示す。この図より呑吸強さや破壊靭性等の機械的特性は、CNT無添加の焼結体とはほぼ同等の特性値を示することが確認された。例えば、GPS-HIP焼結体とHP焼結体の3点呑吸強さはそれぞれ72と904MPaであり、CNT無添加と同等の値を示した。破壊靭性はいずれも6.5〜6.6MPam^{1/2}であった。これらはこれまで報告されているCNT添加量子化ケイ素焼結体の中で最も高い値であり、CNT添加によって機械的特性と導電性を共存させた量子化ケイ素を世界に先駆けて製造することができた。このような材料の出現は微細な鋼材への耐酸化によるダストの付着を抑制することができ、電子機器や高密度な機器への応用を可能にすることが期待される。

5. おわりに

量子化ケイ素はエンジニアリングセラミックスとして総合的に優れた機能・特性を保有することから多くの分野への応用が期待される。今なお先進材料としての研究が進められている。中でも、ベアリングに代表される摩擦部材は量子化ケイ素のもと本質的な機能が最も活用できる分野であり1984年に実用化されて以来著実に発展してきている。中でもSi_{3}N_{4}-Y_{2}O_{3}-Al_{2}O_{3}-TiO_{2}-AIN系焼結体の諸特性

| 表2 CNT添加Si_{3}N_{4}-Y_{2}O_{3}-Al_{2}O_{3}-TiO_{2}-AIN系焼結体の諸特性 |
|---------------------------------|-----------------|-----------------|
| | GPS-HIP | HP |
| Relative density / % | 96.4 | 98.3 | 98.4 |
| Electrical conductivity / Sm^{-1} | 300 | 79.3 | <10^{-6} |
| Bending strength / MPa | 721 | 904 | 950 |
| Fracture toughness (SCF)/MPam^{1/2} | 6.6 | 6.5 | 6.5 |
| Vickers hardness / GPa | 14.3 | 14.8 | 152 |

---36---
参考文献
7) 小松通泰, 日本鋳造学会, No. 1269316 (1985).

Caption
Fig. 1 Comparison in rolling fatigue life between silicon nitride ceramics, Si₃N₄-Y₂O₃-Al₂O₃ and steel, SUJ2.
Fig. 2 Advantages of silicon nitride ceramics as bearing materials.
Fig. 3 Comparison in densification rate between Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN and Si₃N₄-Y₂O₃-Al₂O₃-TiO₂.
Fig. 4 TEM photographs of typical silicon nitride ceramics: Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN (TiO2/AlN=5wt%/5wt%)
Fig. 5 Relative densities of CNT-dispersed silicon nitride ceramics: (a) Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN, (b) Si₃N₄-Y₂O₃-Al₂O₃.
Fig. 6 X-ray diffraction patterns of CNT-dispersed silicon nitride ceramics: (a) Si₃N₄-Y₂O₃-Al₂O₃, (b) Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN.
Fig. 7 X-ray diffraction patterns of CNT-dispersed silicon nitride ceramics against CNT content.
Fig. 8 Microstructures of 1.8wt%CNT-dispersed silicon nitrides: (a) Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN, and (b) Si₃N₄-Y₂O₃-Al₂O₃.
Fig. 9 Microstructures of CNT-dispersed silicon nitrides: comparison between GPS and HP processes.
Fig. 10 Relations between electrical conductivity and CNT content in CNT-dispersed silicon nitrides.
Table 1 Key innovation in silicon nitride bearings development.
Table 2 Various properties of CNT-dispersed silicon nitride ceramics fabricated from the Si₃N₄-Y₂O₃-Al₂O₃-TiO₂-AlN composition.
ナノ粒子コンポジットによる高機能材料の開発

1. はじめに

ナノ粒子やナノ構造材料などのナノテクノロジーが注目を集っている。ナノ粒子はバルクとは異なる物理・化学特性があり、その特徴を生かし、新しい技術が必要である。当社ではナノ粒子の特性を十分に生かすためのコンポジット開発、あるいはナノ粒子のマトリックス中の分散性制御によって、その応用範囲を広げる検討を進めている。この中で、ナノ粒子の存在状態をコントロールすることで実用化できた例として、①チタニナナノ粒子をアルミノ酸塩にインターカレーションすることで有機合成材料を高機能化した例、②硫酸チタン高分散させることで導電性と機械的強度の両立を可能にした複合化プラスチック材料について、そのプロセス、構造及び特徴を紹介する。

2. 多孔質アルミノ酸塩への担持による
光触媒の高機能化

光触媒は水や汚物の処理として有効なグローバルなニーズがある。特にチタン酸塩は光触媒としての効果が期待される。このアルミノ酸塩は、光触媒の特徴を活かすことができる。汚物処理を効果的に行うためには、光触媒の特性を生かすことが重要である。この課題を解決する方法として、光触媒表面を多孔質シリカやアセチル酸塩で被覆し、有機素間にパイプインで直接接触することを防ぐ工夫がなされている。

当社では多孔質アルミノ酸塩に酸化チタンを複合化した材料（以下、複合体）を開発した。この材料は、繊維やプラスチックなどの有機合成材料に加工して数多く、光触媒効果により表面が劣化することを抑制する特徴をもっている。また、この複合体は、多孔質アルミノ酸塩が持つ吸湿性や耐水性などの特長をより高機能化させる。これにより、インナー、カーテン、床材等、様々な用途において応用が考えられている。

2.1 複合体の構造

アルミノ酸塩は、表面が多孔質で4nm〜100nmの細粉をもつ有機合成材料である（表面積160m²/g、平均粒子径7μm）。このアルミノ酸塩に酸化チタン（平均粒子径7nm）を担持させることで複合体が得られる。この複合体の断面TEM写真を図1に示す。アルミノ酸塩と酸化チタンの表面近傍で微粒子が存在し、この部分をEDSにより元素分析するとTiが検出され、アルミノ酸塩粒子の表面に酸化チタンの存在を確認できた。更に、この酸化チタンは20nmであるから、酸化チタンは酸化チタンを核として担持されていることがわかる。

2.2 複合体に含有する素材の耐光性

この複合体を乾燥、燃焼に加工した際の素材の耐光性を検討した。光触媒とアルミノ酸塩を乾燥混合させた粉体を乾燥した紙を紫外線に10年間曝晒させた結果、引張強度が初期に比べ約50％低下した。一方、
複合体を内添した紙の引張強度は、全く低下せず初期の強度を維持した（図2）。また、ポリプロピレン（PP）樹脂に混練した場合、酸化チタンを混練した樹脂を、時間の経過とともに重量が減少したが、複合体を含有した樹脂の重量は、プランクと同様に変化しなかった（図3）。以上の結果から、アルミノケイ酸塩による複合化した酸化チタンは、紙や樹脂の素材を光により劣化しないことがわかる。これは酸化チタンがアルミノケイ酸塩粒子表面の顔孔に存在するため、素材と直接接触しないためと推察される。

2.3 複合体の光触媒効果

次いで、複合体の光触媒効果を確認した。UV照射下と暗所でのアセトアルデヒド濃度の経時変化を図4に示す。暗条件下では48時間経過しても、アセトアルデヒド濃度はほとんど変化しないが、約4時間UV照射するとアセトアルデヒド濃度は検知限界0.2ppm以下に減少し光触媒により分解されたことがわかる。この系に同量のアセトアルデヒドを再び注入し紫外線を照射すると、再びアルデヒドは検知限界以下となった。

同じ複合体を用いて、同様にホルムアルデヒド濃度の経時変化を測定した結果を図5に示す。図5はアルミノケイ酸塩単独の結果で、時間と共にホルムアルデヒド濃度は減少するが、UV照射の有無には影響しない。一方、複合体は、24時間後ホルムアルデヒド濃度が約95%以上減少している。
度がUV照射時に暗所での濃度の1/2にまで減少した。UV照射により大きく濃度減少したことから、この濃度減少は光触媒による分解と考えられる。24時間後に再びガス濃度を約20ppmとなるようにガスを注入し紫外線を照射しても、複合体によりホルムアルデヒド濃度は再び低下した。この結果は、同時に測定した分解ガス（CO₂）の濃度の測定結果からも裏付けられている。

3. 導電性カーボンブラックの分散制御によるプラストックの高機能化

カーボンブラックは古くからゴムなどの充填材として使用されている固体であるが、実際には一次粒子径が20-40nmでありナノ粒子として取り扱うべき材料である。特殊な製造法を用いることによってカーボン粒子に導電性を持たせることができ、金属代替、制電目的（静電気放電防止、帯電防止）、あるいは電磁波障害（EMI）対策のために、絶縁性である高分子材料に導電性を付与することが行われている。しかし、特に導電性カーボンブラックと呼ばれる比表面積の大きいカーボンブラックは、高分子材料中への均一分散が難しく、この分散性が高分子材料の力学特性にも大きく影響を及ぼすため、機能的および化学的分散制御が行われている。

当社では導電性カーボンブラックの中でも比表面積が著しく大きいケッケンブラックを販売しており、さらにこの川下展開としてエンジニアプラスチック中にケッケンブラックを分散させた導電性コンパウンドを製造・販売している。この特徴は、ポリマーアロイの応用や耐熱性高分子分散剤の添加で高分子材料中のケッケンブラックの存在状態をコントロールすることである。
3.2 ポリマーアロイによるカーボン分散性の制御

この高分子材料中の分散状態を制御するために、ポリマーアロイの技術を応用した。ポリマー自体は溶解度パラメータが比較的近く、高分子構造をもつポリマーアロイにおいて、カーボンプラックとの混練性が大きく異なる場合、カーボンプラックが局在化することを見出した。

図7にその結果を示すが、PC（ポリカーボネート）単独ではケッチェンプラックが均一に分散しているのに対し、PC・ポリエステル混合系ではポリエステル部分（図では白い部分、ポリエステル量：30%）にケッチェンプラックが局在化している様子がはっきりと観察できる。図8はケッチェンプラック含有量を5%に固定し、マトリックス樹脂であるPCとポリエステルの比率を変化させたコンパウンド成形体の表面抵抗率をプロットしたものである。少量のポリエステルを配合することで導電性が著しく低下することがわかる。これは、ポリエステル中のカーボン濃度が高まることで、少ないカーボン量で導電シャナルを形成し、導電性を発現するためである。この効果をケッチェンプラック含有量の変化で見たものが図9である。ポリエステル混合系は全体的に少ないカーボン添加量で導電性が発現している。さらに、ポリエステル混合系では、シートにした際の耐折強度が著しく増大することが確認された。
4. まとめ

当社では、ナノ粒子を無機粒子や有機物質と複合化した機能材料の開発を進めている。今後、ナノ粒子の存在状態をコントロールすることで実用化できた例として、①チタニアナノ粒子をアルミノ硅酸ギャイオンでイオーナカレーションすることで有機素材へのダメージが減少し広範囲の基材に耐熱・抗菌効果が付与できる複合化材料、及び②カーボンを高分散させることで導電性と機械的強度の両立を可能にした複合化材料について、そのプロセス、構造及び特性を紹介した。今後、更に検討を進め、ナノテクノロジーの実用化に努めていきたい。

引用文献
1）篠原久典、笠井覚、角井喜雄、工業材料、47-6（1999）40。
2）二階堂透則、古屋幸子、角井喜雄、表面技術、55-5（2004）33。
3）T. Kakui, M. Nakaido and S. Furuya, ACS, 107th Annual Meeting（2005）Baltimore。
4）戸塚光雄、プラスチックスエージ、5（2004）164。

Caption
Fig. 1. TEM-EDS (Energy Dispersion X-ray Spectrometry) analysis of the surface of TiO₂/aluminoasilicate composite.
Fig. 2. Changes of tensile strength of paper with TiO₂/aluminoasilicate composite under UV light. ○: dry blend type. ●: composite type
Fig. 3. Weight changes of PP resins adding various powders by UV irradiation. ×: without powder. ○: TiO₂ only. ●: TiO₂/aluminoasilicate composite
Fig. 4. Time dependence of acetaldehyde concentration at the presence of TiO₂/aluminoasilicate composite. ●: under UV light, ○: dark place
Fig. 5. Time dependence of formaldehyde concentration at the presence of TiO₂/aluminoasilicate composite. left figure: only aluminoasilicate powder, right figure: TiO₂/aluminoasilicate composite. ●: under UV light, ○: dark place
Fig. 6. TEM photograph of Ketjenblack
Fig. 7. Dispersed state of Ketjenblack in the PC resins and PC+Polyester alloy. left figure: PC/Ketjen-black 10%, right figure: PC+Polyester/ Ketjen-black 5%
Fig. 8. Relation between surface resistivity and polyester ratio in the PC/carbon composite.
Fig. 9. Effect of polyester on the relation between the surface resistivity and carbon content.
アルコキシシランを用いたシリカ微粒子の分散と工業化

合田 秀樹

1. はじめに

1.1 ゾルーゲルハイブリッド

壊れ難くて軽いプラスチックと、硬くて熱に強いセラミックの間の性質を持つ材料を開発することが、複合材料開発の大きな目標の一つであった。しかしへプラスチックとセラミックは化学的に大きく異なる性質を持っており、うまく混ぜ合わせることは簡単な技術ではない。近年、ゾルーゲルハイブリッド法と呼ばれる方法で、プラスチック等とセラミックのナノレベルの混合が可能になり注目を集めている。これらの材料は、層間插入法やナノフィラー分散法によるナノコンポジット作製と共にナノテクノロジープームの中核を成し、研究開発が盛んに行われるようになった1-3)。

ゾルーゲル法とは、図1にあるように、アルコキシシラン（TMOS（テトラメトキシシラン）やTEOS（テトラエトキシシラン））に代表される金属アルコキシシランを硬化して金属化合物の薄膜を作製する方法である。このゾルーゲル硬化反応を果たされた溶液ポリマー系はポリマー溶液中で行い、ゾルーゲル硬化によるシロキサン結合の成長をポリマーが阻害し、数ナノメートルのシリカがポリマー中に分散した硬化物が得られる。これをゾルーゲルハイブリッドと呼ぶ。主には、ゾルーゲル硬化の過程で生成するシリノール基（Si–OH）とポリマー系の水素結合基との相互作用を利用した3,4)。ゾルーゲル法を応用した複合材料は完全に透明であり、一見して異種の混合材料という印象は持たない。そのため、コンポジットよりハイブリッドという言葉が用いられる。

1.2 分子ハイブリッドの分子設計

複合材料において、マトリックスのポリマー系に分散するセラミック粒子の粒子径が小さくなると、両材料の界面は反比例的に増す。複合材料特性に及ぼす分散粒子の効果が大きくなる。我々はゾルーゲル法ハイブリッドに着目し、ポリマー鎖長より小さいシリカを分散させた分子ハイブリッドに目標を定めて開発を進める理由をここに述べる。

ゾルーゲルハイブリッド法では利用できるポリマー材料種が生成するシリカと強い相互作用を生むアルコール溶液や水溶性ポリマー材料系に限定される。更にゾルーゲルハイブリッドの形成過程では、ゾルーゲル硬化反応が溶液の蒸発やポリマーの硬変反応と競争して起こり、これらの各々の相対速度が生成するハイブリッド物の出来上る（シリカの分散状態）を決定するため、溶媒の種類、硬化条件、ハイブリッド材の膜厚などの環境変化に強く影響され、従って様々な用途に工業的に安定して利用するのに困難が生じる。5,6)
我々は広いポリマー材料に応用でき、かつ、機械の様に硬化しても安定してシリカのナノ分散が得られるハイブリッド手法の開発を目指した。

プラスチック材料にガラスなどのセラミック粒子を混ぜると、耐熱性が上がる反面、硬くて貴くなろうとは想像するも難しい。異種の材料を混ぜると、必ずその長所と短所が複合材料の性質に反映される。我々の研究は、このようなポリマーとシリカとの相加平均的材料を創ろうという考えに基づくものではない。用途を創り、双方の長所を寄せ集めた新素材の誕生を目指すものであった。

我々が開発した位置選択的分子ハイブリッド手法は上記の複合材料の課題をことごとく解決するハイブリッド手法である。図2にあるように、位置選択的分子ハイブリッド手法では、アルコキシシリラン化合物を重合し、グリシジルドなどの官能基（図中のX）を持ったポリアルコキシシリカンと重合する。これをポリマーの時間に制御して、ポリマーの特定部位にポリアルコキシシリカンを導入し、アルコキシシリラン変性ポリマーとする。ポリアルコキシシリカン部位は、モノマー同様のカップリング硬化反応でシリカを形成する。アルコキシシリランをポリマーを事前に反応させ、有機化合物で結びつけることで、広範なポリマー材料にハイブリッド技術を応用することが出来、また薄膜や硬化条件など環境の影響を受けにくく、安定したシリカ分散が実現する。

我々の位置選択的分子ハイブリッド手法の最大の利点は、用途に合わせた設計が可能です。高分子学の種類が多様であるため、ポリマーの種類を調整することで、ポリマーの変性を容易に行う。ポリマーの種類は多様であるため、ポリマーの変性を容易に行う。ポリマーの種類を調整することで、ポリマーの変性を容易に行う。ポリマーの種類を調整することで、ポリマーの変性を容易に行う。ポリマーの種類を調整することで、ポリマーの変性を容易に行う。ポリマーの種類を調整することで、ポリマーの変性を容易に行う。
2. 融けないプラスチック～エポキシ樹脂系ハイブリッド

ポリマー材料はTg（グラス転移温度）を超えると軟化し、大きく物性を損なう。環境問題でハロゲン化エポキシ樹脂の使用が危ぶまれる現代、電子材料などハイテク業界においては耐熱性、耐燃性エポキシ樹脂のニーズは大きい。

エポキシ樹脂系ハイブリッドでは、耐熱性を向上するために、図4のようやエポキシ樹脂の熟に弱い部分にアルコキシシランオリゴマーを硬化してシリカを導入し、硬化物のTg消失（図5）、熱分解温度上昇、熱膨張低下現象を実現する。

またシリカの低熱電性、無機基材密着性がなるべく付加価値をもたら、様々な用途で素材としての工業的利用が進んでいる。プリント基板周辺の絶縁材料としては耐熱性や絶縁性が評価され、レジストインキ、ビルダップ基板用層間絶縁樹脂、塗料として本材料の成分利用が進んでいる。半導体用途は、異方性導電フィルム（ACF）の耐熱性成分としても利用され、精密治具材のコート材としては密着性と耐光熟変性が評価される日本製の下塗り塗料、カーボンデポなどポリカーボネート素材へのハードコート材として利用されている。溶融塗料メキシのアンカー剤としての利用は適液による下閉を有するクロメート処理に代わるもので、環境保護の観点も大きい。また最近成長が著しい液晶ディスプレイ関係では、耐熱性とガラス基材密着性が評価され、液晶用シール剤として成分利用が期待に増えつつあり、カラーフィルター保護膜としても工業化が計られている。

また我々はエポキシ樹脂～シリカハイブリッド相と液晶ポリマー相がミクロ相分離する3元ハイブリッドを開発、耐熱性で密着性、柔軟性を兼ね備えるフレキシブルプリント基板用接着剤を工業化するに至っている。

原料のシラン化合物はテトラメトキシエチル、アルキルトリメトキシエチルを主成分とし、吸水率や電気特性、力学特性を開発、エポキシ樹脂もビスフェノールとノボ
3. 強靭な樹脂〜フェノール樹脂系ハイブリッド

エポキシ樹脂の硬化剤であるホロックフェノール樹脂にシリカを結合させると低熱膨張性や耐分解性が得られ、耐熱性や耐熱性が改良される。このようにフレスル系ハイブリッドは耐熱性、難燃性、力学強度が高まり、スピーカー素材として工業化されている。

4. 柔らかいシリカハイブリッド〜ウレタン系ハイブリッド

ウレタンのゴム弾性を活かしてシリカをハイブリッドするには、シリカの位置の固定は不可欠である。ウレタンは典型的なゴム材料であり、硬質のソフトセグメント（SS）相に固体のハードセグメント（HS）ドメインが分散した構造を持つ。図6のように、ウレタン〜シリカハイブリッドではシリカをHS相にのみ複合化し、ハイブリッドドメインを形成させることが工夫されている。シリカの寄与でHSドメインに耐熱性を付与する一方で、SSはシリカの影響から守り、柔軟性を保持する。我々はシリカ表面に結合した染色基の発光スペクトルから分子ハイブリッドを証明し、更にSALSを利用してドメイン間の相互作用を報告している。本ハイブリッド材は柔軟性と耐熱性を活かし、フレキシブル基板周辺のコート材で、内視鏡14）、弾性塗料、封止材料として利用が進んでいる。

5. イミドに代わる安価エンプラ〜アミドイミド系ハイブリッド

アミドイミドは、イミド対比で5分の1以下のモノ
6. 無電解めっき可能なイミド（イミド系ハイプリッド）

イミドフィルムは耐熱性材料や絶縁材料として様々な分野で用いられているが、一方で導体（金属）への接着に難がある。一方、アルコキシラシラシシランオリゴマーを基にしたアミック酸を金属箔上でイミド化することで、図8のようにシリカがナノ分散したプリント基版を得ることが出来、特に著者らにより優れた二層フレキシブル基版として今後、工業化実験が開始した。

参考文献
9) 合田秀樹, 高分子論文集(Kobunshi Ronbunshu), 59, 596 (2002).
10) 合田秀樹, 日本正和, 高分子討論会, 51, 2245 (2002).
12) 太陽インキ産業, 荒川化学工業, 時間2002-040633.
13) 松下電工, 荒川化学工業, 時間2001-261776.
14) 旭光学, 時間2002-224021.
15) 古河電気工業, 時間2001-319526.
16) 岡崎自適機械, 時間2004-84656.
Caption

Fig. 1. Sol-gel Curing Reaction
Fig. 2. Site-selective Molecular Hybrid Preparation
Fig. 3. Advantages of Site-selective Molecular Hybrid
Fig. 4. Structure of Silane-modified Epoxy Resin (Compocean E)

Fig. 5. High Heat Resistance of Epoxy-Silica Hybrid
Fig. 6. Chemical Model of Polyurethane-Silica Hybrid
Fig. 7. Structure of Silane-modified Poly(amide-imide)
Fig. 8. TEM Image of Polyimide-Silica Hybrid Film
Fig. 9. Polyimide-Silica Hybrid Film after Wet-plating Process
高分子材料中への粒子分散プロセスによる
ポリマークリヤノコンポジットの開発

株式会社 東田中央研究所 有機材料研究室
日杵 有光

1. はじめに
合成樹脂やゴムが自動車部品から日用品に至るまで幅広く利用されるようになったのは、各用途に適したさまざまな合成樹脂、ゴムが生産されるようになったこと以外に、ガラス繊維やカーボンに代表されるフィラーの複合化による合成樹脂、ゴムの強度、耐熱性向上によるところが大きいと思われる。我々はクリヤ（粘土）の1種であるモンモリロナイトをもとにアーティファーション機能を有した、合成樹脂やゴム中にその基本単位層（以下、シリケート層とよぶ）を均一に分散させることを検討してきた。

モンモリロナイトの結晶構造は、シリカ四面体層／アルミナ八面体層／シリカ四面体層からなるシリケート層が層層してなる。このシリケート層は厚さが約1nm、一辺の長さが100nmのシート状をしている。このシリケート層を合成樹脂中にばらばらにして均一に分散させれば、まさに“分子サイズのフィラー”としての効果を期待できるからである。

ここでは、合成樹脂中にそのシリケート層を均一に分散させることに成功して得られたナイロン6-クリヤハイブリッド（ナノコンポジット）とポリプロピレンクリヤハイブリッドについて概説するとともに、最近のゴムやアクリルなどへの展開について触れる。

2. ナイロン6-クリヤハイブリッド
2.1 モノマーをインターパージョン後に重合する方法
最初は、モンモリロナイトのシリケート層間でナイロン6のモノマーであるアミノ酸またはカルボン酸を重合させることによりシリケート層を分散させた。12-アミノ酸（H₂N(CH₃)₄COOH）のアンモニウム塩をイオン交換し、ケイ酸プロックを溶融（脈点: 70℃）させて混合後、250℃で処理すると、12-アミノ酸のアンモニウム塩を基質とし、ケイ酸プロックが重合重合した。重合の進行とともに層間は大きく広がり（10nm以上）、ナイロン6中にモンモリロナイトのシリケート層が均一に分散したナイロン6-クリヤハイブリッド（Nylon 6-Clay Hybrid-N CH）が得られた。

2.2 NCHの特性
2.2.1 物理特性
表1にNCHの特性をナイロン6と比較して示す。
NCHは、モノモリロナイトのわずか4.2%の添加で、ナイロン6に比べ引張強さに約1.5倍、弾性率で約2倍の値を示している。また、熱変形温度は152℃を示し、ナイロン6に比べ約80℃の向上が認められた。

2.2.2 ガスバリア性
分子サイズのフィラーとしてモンモリロナイトのシリケート層を複合化して得られた新規な機能としてガスバリア性がある。NCHのフィルムを成形すると、シート状のシリケート層がフィルム面に対し平行に配列する。これは、フィルム断面を酸素プラズマでエッティングした後にSEMで観察できた（図1）。水、酸素

Development of Polymer Clay Nanocomposites by Particle Dispersion Process into Polymer
Arimitsu USUKI, Ph.D.
株式会社 東田中央研究所 材料研究
有機材料研究室 室長
Research Manager,
Organic Materials Lab., Materials Dept.
TOYOTA CENTRAL R&D LABS, INC.

E-mail: usuki@moesk.tyrlabs.co.jp
表1 NCHの特性（＊表中2,5は合成時の有機溶媒の仕込み量）

<table>
<thead>
<tr>
<th>特性</th>
<th>單位</th>
<th>NCH2*</th>
<th>NCH5*</th>
<th>ナイロン6</th>
</tr>
</thead>
<tbody>
<tr>
<td>クレイ含量</td>
<td>wt %</td>
<td>1.6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>vol %</td>
<td>0.6</td>
<td>1.6</td>
<td>0</td>
</tr>
<tr>
<td>引張り強さ</td>
<td>MPa</td>
<td>76.4</td>
<td>97.2</td>
<td>68.6</td>
</tr>
<tr>
<td>熱変形温度</td>
<td>℃</td>
<td>118</td>
<td>152</td>
<td>65</td>
</tr>
<tr>
<td>ガスバリア性</td>
<td>×10^{-11}cm^3·cm·cmHg^{-1}sec·cmHg^{-1}</td>
<td>1.70</td>
<td>1.28</td>
<td>2.57</td>
</tr>
<tr>
<td>衝撃強度</td>
<td>kJ/m²</td>
<td>102</td>
<td>52.5</td>
<td>＞150</td>
</tr>
</tbody>
</table>

図1 NCHフィルムの断面SEM写真（30secの酸素プラズマエッチング後）

などの分子はシリケート層を塗浸して透かすので、
同じ厚みで比較すればNCHはナイロン6に比べガス
バリア性が高くなっている。例えば、水の拡散係数を
見てみると、わずか数μMのモンモリロナイトの添加で
1/2に小さくなっている。また、バリア性の向上はシ
リケート層による遮断効果であり、化学的な相互作用
でないため、気体や液体の種類に依らず期待できる。

2.2.3 ナイロンをシリケート層間にインターカー
ートする方法

ナイロン樹脂には、ナイロン6以外に、ナイロン
66、ナイロン610、ナイロン12、ナイロン11、ナイロ
ン46等がある。NCHの合成は、モノマーをモンモリ
ロナイトの層間で重合する方法によったが、この方法
は他のナイロン樹脂への適用は困難であった。

NCH開発当初、コンバウンド法では単純なブレンド
しかできないものと考えられていた。しかし、モン
モリロナイトの有機化処理の最適化、2軸押出機のス
クリュー形状の最適化によって、コンバウンド法に
よってNCHが作製することができるようになった。
従来の重合法で作製したNCHとコンバウンド法で作
製したNCHの引張り強さと熱変形温度はほぼ同様の値
を示す。また、ナイロン12は一般にチューブ材料とし
て使用されているが、クレイを分散させることによっ
て、NCHと同様にガスバリア性を向上させることが
できることがわかった。

3. ポリプロピレンレイハイブリッドの合
成と特性

NCHでの成功の後、第2のクレイハイブリッド材
料を創製すべく、自動車分野で消費量の多いポリプロ
ピレンでの検討を開始した。ポリプロピレンは気相反
応で合成されることが多く、また、合成時の触媒の作
用（重合活性や立体規則性）も複雑である。そのため、
ポリプロピレンレイハイブリッド（PPCH）の合成
には、NCHのようにモノマーを層間で重合する方法
の適用は可能だが、実用上難しいと判断された。そこ
で、重合法ではなく他の方法によることにした。当初、
極性の高いモンモリロナイトを非極性の代表であるポ
リプロピレンに分散させる方法として、モンモリロナ
イトの有機化を検討した。モンモリロナイトは、アル
キルアノミウムを用いてイオン交換反応することに
より有機化できる。アルキル鎖を長く、あるいは、ア
ルキル鎖の数を増やすことによって、モンモリロナイ
トの陥水化が進み、ポリプロピレンへの分散性が向上
するものと考えられた。そこで、オクタデシアルアンモニウムでイオン交換したモノモリノナイトを、ポリプロピレンに溶融・混練することによって添加した。目視観察では、透明な塩化材料が得られたが、ナノメートルオーダーでの分散には至らず、物性もほとんど向上しなかった。上記のような実験を基に、モノモリノナイトの表面をポリオレフィンのオリゴマでモノモリノナイトを処理することを考えた。有機化処理したモノモリノナイトには、極性のある分子をインターカレートできる。ポリプロピレンは非極性であるが、これに極性を与えた変性ポリプロピレン（無水マレイン酸変性と水酸基変性のポリプロピレン）が市販されている。これらが有機化モノモリノナイトにインターカレートするか否かを検討すると、極性基によらず、極性基の量によってインターカレートが可能かどうかが決まることがわかった。この検討によって得られた層間化合物をポリプロピレンに分散させることによって、ポリプロピレンクレイハイブリッド（PPCH）を耐熱化することが成功した。また、層間化合物を予め作製しなくても、ポリプロピレンと変性ポリプロピレンと変性クレイを一度に混合し、混練・混練してもPPCHが作製できることもわかった。

我々は、ポリプロピレンクレイハイブリッドで得られた知見をもとに、ポリエチレンでも同様にクレイハイブリットを合成し、さらに変性ポリステレンをクレイの分散剤として用いることにより、ポリステレンにクレイをハイブリッド化することにも成功した。

4. EPDMクレイハイブリッドの合成と特性

次にオレフィン系ゴムの代表であるEPDMにクレイを均一分散させる手法を検討した。ポリエチレンやポリプロピレンと同様に変性したEPDMを使用すれば問題無く、ゴム分子がクレイ層間にインターカレートされる事はわかった。しかしながらゴムの場合は、加硫プロセスがあり、そのプロセス中にゴム分子が極性に付与できるため、まったく変性をしないEPDMを使用しても加硫時にインターカレートする事が出た。

加硫促進剤の種類によりEPDMのインターカレーショクの仕方が大きく異なるため、機構としてEPDMに加硫促進剤がラジカル的に結合し、極性が付与されてクレイ層間にインターカレートされるものと考えている。

図2 SEBSクレイハイブリッドのTEM写真

5. クレイによるポリマーのモルフォロジー制御

クレイ表面への選択的な吸着に着目し、一分子内に性質の異なるポリマーをセグメントを有するブロックポリマーとのナノコンポジット化を検討した。

ここではSEBSクレイハイブリッド（SEBS：水添ステレン-プタジェン-ステレンブロックポリマー）を観察されたクレイによるポリマーのモルフォロジー制御を紹介する。2軸押出機を用いSEBSペレットと有機化したモノモリノナイト粉末を20℃で溶融混練することでナノコンポジットを製作した。SEBSは30%のステレン部と70%の水添プタジェン部よりなるトリブロックポリマーを用いた。

図2にSEBSクレイハイブリッドの透過電子顕微鏡写真を示す。観察試料には、塩化ルテニウムで染色したブレース断片（厚さ2mm）断面よりミクロトームで切り出した断面切片を用いた。写真中紫色の細線が厚さ1mmのクレイ断面であり、灰色に染色された部分がポリスチレン部である。

オリジナルのSEBSではポリスチレン相と水添ポリブタジェン相はラグジュアミクロ相分離構造をとっていたのに対し、クレイハイブリッドではクレイ層に沿って観察される構造的な相分離構造が観察された（図2）。この構造はクレイにより新たな誘起されたものであり、カーブしたクレイ層の周辺にはカーブしたSEBSのミクロ相分離構造が観察された。またこの構造は多いとは12層にわたって誘起されており、ポリマーの約150nmまでクレイ界面との影響が及んでいた。

この現象はクレイに限らずナノレベルの粒子を微細分散することによりポリマーのミクロ相分離構造が可能であることを示唆しており、更なる研究が期待される。
文献
2）臼杵有光，岡田喜，高分子，43, 360 (1994).

Caption
Fig. 1 SEM photographs of NCH films (after 30sec oxygen plasma etching)
Fig. 2 TEM photographs of SEBS clay hybrid
Table 1 Properties of NCH (Nylon clay hybrid)
ポリマー中へのカーボンナノチューブ（CNT）の分散とその評価

タキロン株式会社 研究開発部

高瀬 博文

1. カーボンナノチューブ

1991年、綿縄により発見されたカーボンナノチューブ（以下、CNTと略記する）は、21世紀の黒いダイヤモンドと呼ばれ、ナノテクノロジーの先端技術として注目されている1-3。現在、多岐にわたり研究が行われており、様々な分野への応用展開が期待されている。CNTは、その1本の極度の長さを、誘電体を模倣する方向で進める研究の方で、CNTを大量に使う分野に応用化される。前者には、FED（Field Emission Display）などの電気発光照明、SEM（Scan Electron Microscope）、Li電池の負極材などの電池材料、LSI・電子デバイスの配線などに応用が期待されている3-6。一方、後者の分野では、焼結電池の水素ガス防護材料、複合樹脂材料などへの応用が進められ7-9。CNTの大量消費は、非常に高価な材料単価を汎用化するためにも重要な役割を果たすと考えられる。本稿では、溶融樹脂中では、困難とされるCNTの分散について紹介する。

2. カーボンナノチューブ凝集破壊のモデル

ゴム中に添加したカーボンブラック凝集体がマトリクス中に混入される過程について、Palmgrenは、図1のように4段階に分けて説明している10。CNTを分散する。

Dispersion of the Carbon–Nanotube (CNT) into the Polymer
Hirofumi TAKASE, Ph.D.
タキロン株式会社 研究開発部 混合商品開発室 主事
Section Manager, Advanced Products Development Dept.
Research & Development Div.
TAKIRON CO., LTD.
連絡先：〒671-1383 兵庫県たつの市幡津町向陽145番地
E-mail：boontaka@takiron.co.jp

このPalmgrenの4つの分散過程に置き換えて説明すると以下のようにになる11。

(1) 大きなCNT凝集体が衝突や外部応力などにより小さな凝集体に破壊し細分化する。
(2) 小さくなったCNT凝集体がマトリクス中へ混入する。
(3) マトリクス中に混入したCNTがマトリクス材料から電気的及び熱的に親和するように断面を切り、凝集が解けて分散化（1本のCNT繊維に分散）する。
(4) 分散化したCNT繊維が、マトリクス中に分配・拡散する。
3. 押出機を使ったCNTの分散

溶融樹脂中に分散させたCNT分散には、混練性能が高いため二軸押出機が用いられることが多い。二軸押出機は、スクリュ部分がセグメントタイプになっており自由にデザインを変更することが出来ており、CNT本来の性能を発揮させるためには、1本のCNT繊維中にまで分散させることが重要である。押出機の運動機制やスクリュデザインと分散状態に相関性があることも現実であるが、それらの影響を分析した報告例は少ない。我々は、二軸押出機を用いて様々な条件でCNTコンポジットを作製し、その分散状態と疲労寿命の因子関係を明らかにした。とりわけ重要である、数値化する分散評価に関して以下に説明する。

4. コンポジットの分散と分散評価

ナノ材料に関わらず、コンポジット中の分散について透視型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)の写真を使い、モルフォロジーと物性などの関係について述べた報告は数多くある。しかし、そのほとんどが、TEM・SEM写真を視覚で物性に比較して議論したもので、分散状態を数値化した報告はほとんどない。また、TEM・SEM写真は限られたごく数箇所を観察しているに過ぎず、数枚のTEM・SEM写真から全体の分散状態を決定するのは危険を伴うことが多い。

本稿で紹介するのは、成形したコンポジットから切り出した試片の顕微鏡写真から画像解析を行い、その画像分析に占める凝集体の面積率A_r及び最大粒子面積Maxなどのパラメータを使って、分散状態を定量化する方法とその応用例である。

4.1 面積率A_rと物性との相関性

押出成形によるフィラーなどの混練・分散状態は、滞留時間などの押出条件やスクリュ形状などの機械形状の違いによって、大きく変化することはよく知られている。そこで次に挙げるファクターをそれぞれ定量化することにより三者の相関性を検討する。

【Ⅰ】押出機の機械形状・運動条件をせん断速度$\dot{\gamma}$と滞留時間τの値であるせん断粘度η_sととして計算する。

【Ⅱ】コンポジット物性としてコンポジットの体積抵抗値ρを測定する。

【Ⅲ】フィラーの分散形状を定量化する。ここでは、【Ⅱ】の分散状態の定量化手法について説明する。

CNTコンポジットからミクロトームを行い、数μmの一定厚みのスライス片を切り出す。このスライス片を透視型実体顕微鏡にて30倍で撮影した写真を図2であり、写真中の黒色の凝集体がCNTである。顕微鏡写真から画像解析ソフトを用いて、画像内に占める一定面積以上の粒子を抽出し、その積み重ねに占める面積率A_rを測定した。本稿では、ディスプレイ上の1画素分の大きさである$1.30\times10^{-5}\mu\text{m}^2$をしきい値とした。この面積率$A_r$は、分散の密度を数値化したものの、$A_r$値をCNTの分散度と定義する。$A_r$値は、1条件のコンポジットあたり、20箇所以上のスライス片より測定を行い算出する。また、機械数を増すことにより精度は上がり、そのA_r値の変動を比較することからも分散状態（フィラーの分散状態）を評価できる。

図2の注釈は、成形条件のパラメータで、二軸押出機スクリュ回転数をN(rpm)、線速度出力量をQ(kg/hr)とする。各条件により分散状態、すなわちA_r値に差が生じることがわかる。増幅は全て同じであるにも関わらず、図2のように凝集体の数や大きさが違うのは、CNTが押出機のせん断によって凝集が解けて微細化し、顕微鏡画像の観察域である$1.30\times10^{-5}\mu\text{m}^2$未満の大きさになるためである。すなわち、図2(a)に多く見られるような凝集した未分散のCNTが多く残っているほどA_r値が大きくなる。すなわち、A_r値が小さい時、分散が良いことを意味する。

図2からわかるように、スクリュ回転数が多く、単位材出力あたりにかかるせん断速度の値が大きい方ほど分散が進行している。更に、図2(c)のようなA_r値が0.2%以下の良好な分散の場合はスクリュで用いて分散の確認を行う。その写真が図3であり、CNTの凝集が解けて1本の繊維構造が観察でき、マトリックスに微分散していることが観察できる。

CNTコンポジットは、広い領域のせん断速度を与えるように多種のスクリュセグメントを組み合わせた様々なスクリュデザインを用いて広いせん断逆重力領域の押出条件により得た。そして、前述の【Ⅰ】押出機の機械形状・運動条件【Ⅱ】コンポジット物性【Ⅲ】フィラーの分散状態をそれぞれのパラメータで、せん断逆重力$\dot{\gamma}$、体積抵抗値ρと面積率A_rに対してプロットしたのが図4である。A_r値が小さく
図1 光学顕微鏡によるCNTの分散状態観察

図2 すなわち分散が良くなるに従い材料に加えられた繊維断面量が大きくなっていくことがわかる。繊維を高濃度で分散させることで、分散状態がより良好に保たれることが確認できる。

図3 TEMによるCNTの分散状態観察

図4 表面積に対する綿せん断応力と体積抵抗率の関係

○, △ 高せん断領域のスクリューデザイン
●, ▲ 低せん断領域のスクリューデザイン
4.2 最大粒子面積 Amax

先述した押出機での分散は、押出後の最終成形物であるコンポジットの性質、分散状態を観察できないため、分散過程を逐時的に見ることはできない。そこで、せん断流動可視化装置を用いて、CNTとポリマーが溶融したせん断流動状態を観察し、分散過程を解析する事を試み、新しいパラメータである最大粒子面積 Amax を紹介する14)。せん断可視化装置とは、図 5 のように 2 枚のガラスプレートに樹脂を挟んで加熱し、溶融状態でガラスを回転させることによりせん断を与え加えることができる。光学顕微鏡と組み合わせることにより、せん断流動状態でポリマーマトリックス中にフィラーが分散していく過程を観察できるシステムである。先述のような分散状態を定量化するため、先述と同様に各せん断条件における 30 倍の顕微鏡の面積解析から面積率と、最大粒子面積の 2 つのパラメータを求めた。1.30×10^3 μm^2以上の面積をもつ凝集体を抽出し、その視野内に占める Amax 値を測定した。一方、Amax 値は、各条件における面積から 1.30×10^3 μm^2 以上の面積をもつ凝集体を抽出し、面積の大きい上位 20 個の平均面積を Amax と定した。

Amax 値は、大きな凝集塊を破壊していぐ指標として用いることができ、図 1-(1)(2)の過程を表す。また、図 1-(3)(4)の過程を表すことができる Ar 値は、その破壊された小さな凝集体を更に微細化して分散していぐ指標として用いることができる。

図 6 は、各せん断速度における温度別の Amax 値を比較したものである。せん断速度が大きく、せん断時間が長いほど分散が進行しているが、せん断速度が大きいほど温度による分散状態の差が少なくなる。そして、図 6(a)の270℃のグラフからわかりるように、比較的小さなせん断速度でも初期段階の 120℃程度で Amax 値の減少が見られることから、図 1 の過程(1)(2)の凝集破壊は、温度環境で起こっていることが想定できる。また、せん断速度が大きくても凝集破壊の速度はそれほど上がらないことから、成形温度を低くしてせん断時間で分散させるのが効果的であることがわかる。

図 7 は、せん断速度が100→300→500 s^-1 と変化したときの温度別の Ar 値を示す。一定のせん断速度 =100s^-1 である、図 6(a)と図 7(a)においての Amax 値と Ar 值の経時変化を比較する。Amax 値は、各温度においても240℃程度までは、せん断時間の経過とともに粒子が小さくなるが、300℃以降の温度では、凝集塊が微細化している。一方、Ar 値は、時間が経過してもあまり小さくならないことから γ = 100s^-1 程度の低せん断速度では、大きな凝集塊をある程度の大きさまで破壊することはできても、微分散には至らない。そして、更にせん断速度の高い γ =300s^-1 の結果を示した図 7(b)からもわかるように、測定したすべての
５．パーコレーション

導電性材料をコンポジット化する際には、用いられるのがパーコレーション現象である。図9は、パーコレーションのモデル図、およびCNTと一般的な導電フィラーの添加量に対する体積抵抗値の変化を示している。CFやポリシプラスなどの導電性フィラーを樹脂中に充填する際、添加量の少ない領域では、線維性を示す。しかし、添加量を増していくと導電性が急激に向上する。低添加量では図9(a)に示されるように樹脂中に存在するフィラーは短絡である。そして、樹脂内に存在するフィラー量が増え、接触が多くなるため、

図8 せん断歯歯時間別のせん断歯歯と面積率の関係

(230℃)

図9 CNTと導電性カーボン系フィラーのパーコレーションカーブの比較

(a)～(c): パーコレーションモデル

加量に達したとき、図9(b)に示すように導電バスと呼ばれる電気を通す連続構造が形成される。導電量の増加に伴い拡散に導電性が向上するのでなく、急激な向上が起こり、この変化をパーコレーション（Percollation）と呼ぶ。そのときの導電率の値をPercolation thresholdという。次に、CNTと一般的な導電性フィラーのパーコレーションカーブを比較する。この図のように、静電気防止機能として求められるコンポジットの導電性は、10^6～10^7Ω・cm程度の表面抵抗値であることが多く、パーコレーションが起こるためには、強化樹脂フィラーの充填が難しい。一方、CNTでは、低添加量で同等の導電性があり、パーコレーションも速く起こるため、表面抵抗値を制御しやすい。

6．まとめ

本稿では、ポリマーへのCNTの分散とその評価方法について、現在までに発表した学会発表内容を論文

—— 57 ——
を中心に紹介した。CNTは、導電性の他にも機械的強度、熱伝導性など、CNTの持つ優れた特性を活かし、様々な分野で利用されることが期待される。その分散方法も形状や特性を把握した上で、選択する必要があり、分散評価に関しても目的に応じたパラメータで整理することが重要である。

参考文献
9) 加藤英樹：プラスチックス, 52, 9, 75 (2001).
12) 高橋博文：見片幸彦, 松田 聡, 村上 慎 : 成形加工, 14, 2, 126 (2002).
14) 高橋博文, 见片幸彦, 松田 聡, 村上 慎 : 成形加工, 15, 1, 80 (2003).
17) ASTM-D-2663-89.

Caption
Fig.1 Four steps in the mixing of polymeric materials with filler particles.
Fig.2 Optical microscopy images show the dispersion conditions of CNT under variation of the screw speed.
Fig.3 TEM photograph shows the dispersion conditions of filler.
Fig.4 Dependence of the dispersion ratio [\(Ar\)] on the total shear strain [\(\gamma \cdot \tau\)] and the volume resistivity [\(\rho_v\)].
（○）螺丝軸の高せん断領域
（▲）螺丝軸の低～中せん断領域
Fig.5 Principle figure of visualization analysis.
Fig.6 Effect of shear rate on dispersion conditions [\(\dot{\gamma} max\)] at each temperature.
Fig.7 Effect of shear rate on dispersion conditions [\(\dot{\gamma} r\)] at each temperature.
Fig.8 Effect of shear rate on dispersion conditions [\(\dot{\gamma} r\)] at each shear history time.
(temp.290℃)
Fig.9 Comparison of the percolation curves at CNT & conductive carbon.
(a)〜(c) : percolation models
高分子材料中の粒子分散に関するコメント

東京農工大学大学院 共生科学技術研究部

神谷 秀博

1. はじめに

高分子材料中の機能性の無機系ナノ粒子を高濃度に分散させることで、誘電率など電気的特性や屈折率など光学的特性に優れた新たなナノ粒子/高分子ハイブリッド複合材料の製造に関する研究が、ナノ粒子応用分野として注目を集めつつある。ナノ粒子の高分子への分散法には、大きく分けて二種類の方法がある。第一に、有機系またはモノマーを複合化させた上で、高分子の重合過程でナノ粒子を析出させるin-situ重合法、第二に合成したナノ粒子を高分子中に直接充填する方法である。両者の手法は一見一様であり、ここでは両者の手法の中で前者の重合法について触れながら、特に後者の直接充填法について何故ナノ粒子の高分子への高濃度充填が困難なのか理論的に検討し、高濃度均一充填を可能とするための基本の考え方を概観する。

2. in-situ重合法における課題

in-situ重合法は、モノマー段階で均一混合すれば、直接充填法に比べ生成するナノ粒子の均一分散性が高いことが期待できる。しかし、ナノ粒子の充填量を増加するため無機系原料濃度を上昇させると、慎重に重合反应過程を制御しないと生成したナノ粒子が全体的に成長し、ナノサイズの維持が困難になる。また、60 vol%以上の濃度でTiO₂を高分子に充填した事例も報告があるが、生成したナノ粒子がアモルファスであるため期待した機能（例えば高屈折率など）を考えると分散粒子の結晶化（高屈折率を狙うのであれば、ルテル化など）が必要である。しかし、アモルファス状態の無機系ナノ粒子を結晶化させるには、例えば、一般的に用いられる加熱操作では、ナノ粒子を覆う高分子の耐熱温度が上限になるため結晶化は難しい。また、結晶化が起こったとしても結晶化過程での粒子成長の抑制も必要である。したがって、実用化が進んでいるのは、結晶化の後処理をしないと十分製品になる素材を対象にしている場合が多い。分散した無機系ナノ粒子の高機能化に関して新プロセスの考案が必要と考えられる。

3. 直接充填法における課題

ナノ粒子の低コスト大量合成技術など粒子の合成に関する技術革新は進み、化粧品、医薬品、粘弾、顔料、トナー、インクなど比較的低濃度のコロイド分散系や糊の状態で使用する分野では各製品化も進んでいる。しかし、合成したナノ粒子を高分子材料中に充填する場合、有機溶媒中でナノ粒子の凝集・分散挙動の制御が必要となるが従来のサブミクロン以上の粒子に比べて凝集防止は極端に困難となる。ここではまず、ナノ粒子となる何故分散が困難になるのか、その理由を詳細に考察した上で、ナノ粒子の分散・凝集制御法に関連する基本的な知見を概観する。

3.1 ナノ粒子は何故凝集制御が困難か

粒径がサブミクロンに近づくとサブミクロン以上の粒子とは異なる粒子表面特性、相互作用が発現し、

Comments of Nanoparticles Dispersion in Polymer and Organic Solvents
Hitoshiro KAMIYA, Dr. Eng.
東京農工大学大学院 共生科学技術研究部 教授
Professor, Institute of Symbiotic Science and Technology,
Tokyo University of Agriculture and Technology

連絡先：〒184-8588 東京都小金井市中央町2-24-16
E-mail：kamiya@cc.tuat.ac.jp

— 59 —
凝集分散特性に特異性が現われる。例えば、ソルゲル法で合成したシリカ粒子を対象に粒子径と表面シラノール基の構造の関係をFT-IRにより解析した結果を図1に示した。100nm以上の粒子ではほとんど観察されない3750cm⁻¹付近のFreeのシラノール基の吸収が粒子径の减少、特にシングルノノの領域になるに従い増加している。この傾向は、他の製法のシリカ粒子でも認められた。これは、シングルノノになるに従い、表面シラノール基のOH基とH原子間距離が格子表面の曲率に近づき、曲率によってシラノール基間距離が増加するため、シラノール基間に水素結合が起きにくくなったと考えられる。また、その結果、100nm以下の粒子で観察される溶媒水分子が吸着して発生する水和力も消失した。さらに、表面シラノール基の距離が増加するため、ナノ粒子になるとシランカップリング剤の単位面積当たりの反応率も低下することが報告されている。

また、微粒子になるほどDLVO理論で求められる静電反発によるポテンシャル障壁は同じ表面エネルギーでも著しく静電反発作用による分散安定化は困難になる。ただし、ペルソースでは界面電気二重層による静電反発作用の効果は必ずしも支配的にはならないう。重要なのは、ナノ粒子になるほど、平均粒子表面間距離が短くなるため粒子濃度を下げないと静電反発効果や分散剤吸着による立体障害効果などが作用しにくくなる点にある。静電反発作用とvan der Waals引力から計算されるDLVOポテンシャル障壁の極大となる表面間距離は一般に数nm程度であり、表面間距離がシングルノノの前半より短くなると分散剤なども面間力に依存しにくくなる。粒子表面間距離(h)は、幾何学的考えると粒子径(d_p)と粒子濃度(F)の関数で与えられ、Woodcockが提案した(1)式がある。

\[h = d_p \left[\frac{1}{1} \left(\frac{3}{\pi} F \right) + \frac{5}{6} \right] \] \hspace{1cm} (1)

著者も粒子の中心の位置が六方密充填の位置に配置した均一球を仮定し次式を求めた。

\[h = d_p \left(\frac{1}{\pi} \left(\frac{3 \times 2^5}{6} \right)^{1/2} - 1 \right) \] \hspace{1cm} (2)

これらの式で計算した粒子表面間距離と粒子径、粒子濃度の関係を図2に示した。粒子径がサブミクロンの場合には粒子濃度が50〜60vol%以下であれば平均表面距離は数nm以上あり、粒子の高濃度スラリー以外は静電反発作用だけでなく粒子径の分散が可能である。一方、粒子径50nmのナノ粒子になると20〜30vol%で表面間距離は数nm以下となる。ナノ粒子では低粒子濃度であれば、表面電位を高くてDLVO的作用で粒子分散は可能であるが、20〜30vol%を超えるとこの作用だけで分散が困難になるのである。

3.2 ナノ粒子の分散に関する基本概念

安定性の高いナノ粒子分散系を得るには、サブミクロン粒子と同様に構造設計した高分子分散剤などを表面に吸着させ静電反発作用や立体障害作用で分散させる方法と、合成段階から分散を意味して表面修飾した粒子を合成して同時に生長させるアプローチがある。前者の場合は、サブミクロン以上の粒子で有効な分子量
10,000程度の高分子分散剤の大きさがナノ粒子に近く、粒子間架橋を起こすため、分子量を小さくし、設計するなどナノ粒子ならではの工夫が必要である。実際に、コロイドプローブAFM法などにより、こうした比較的分子量の高い分散剤を用いると粒子間に架橋が発生することなども確認されている。また、表面をカップリング処理した場合にナノ粒子の場合、カップリング剤が多層反応し、同様の架橋が観察されるケースもある。

一方、表面修飾した粒子を合成すると同時に生成する方法は、逆ミセル法など、ナノサイズの微小反応場を作りその中で粒子合成を行い合成段階で表面に分散安定化が可能な界面活性物質を生成させる方法がある。特に近年、逆ミセルなどの方法の弱点である大量合成を可能とする方法として、油中で金属ミセルを使って粒子を合成する方法などが発展してきている。筆者らは生物由来の複合の界面活性物質を存在下で、チタン酸バリウム等をソルゲル化して、均一沈殿法等により合成した結果、分散安定性の優れたナノ粒子の合成をとると、使用界面活性物質の分子構造により生成する粒子の結晶構造や粒子径の設計も可能であることを示している。

しかし、こうした分散操作は比較的高濃度の先での成功であり、高濃度化した状態でも分散安定性や高分子の支配方を容易にする高濃度性の維持に成功した事例は少ない。また、合成段階で結晶構造設計はin-situ重合法により制約は少ないと言え、有機溶媒などにナノ粒子を分散させた段階で結晶化等の高機能化が必要な場合は、in-situ重合法と同様に結晶構造設計が課題となる。さらに、有機溶媒中に高分子の原料となるモノマーを溶解させ溶媒を除去しながら高分子重合過程でも粒子の集結も予測される。これらの課題を解決しなければ、ナノ粒子を高密度充填した高分子材料を直接充填法で得ることは困難である。

4. 結論

ナノ粒子合成技術は近年、飛躍的に進歩したが、その配列状態を制御し固定化する技術を確立しないと実際の材料用途としての利用は困難である。本小文は、特に高分子材料中にナノ粒子を高密度に分散した複合材料を製造する上で克服すべき課題と現在取り組まれている方法を概観した。特に高機能のナノ粒子を高密度に複合したハイブリッド材料を実現するには、新たなプレイスレールとなる手法の開発が必要と思われる。

引用文献
4）L. V. Woodcock, Proceeding of a workshop held at Zentrum fur interdisziplinare Forschung University Bielefeld, Nov. 11-13, 1985 Edited by Th. Dorfmueller and G. Williams
5）神谷秀博, 第54回理論応用力学講演会講演論文集, p.45-48 (2005)

Caption
Fig. 1 Effect of diameter on FT-IR spectrum.
Fig. 2 Estimation of particle surface distance.
材料の透光観察による粒子分散状態の直接評価

大阪大学 接合科学研究所

阿部 浩也，内藤 牧男

1. はじめに

高分子材料にフィラーと言われる粒子を充填した複合材料は，構造材料並びに機能材料分野で今日の産業を支えている。この系の材料特性はマトリックスポリマー中の粒子の分散状態に著しく影響されるため，粒子の分散状態の評価が極めて重要である。多くの系において，粒子の分散状態は電子顕微鏡により議論されている。粒子の微細化にともない，最近では透過型電子顕微鏡観察(TEM)が頻繁に行われ，ナノ粒子の分散状態や格子／ポリマーの界面構造等の詳細が理解されている1).一方，電子顕微鏡では観察視野が数微小に限定されるので，数多くのサンプルを撮影して解析しなければ機械的特性との関連性を誤りおそれがある。さらに，粒子の微細分散構造のみならず，マトリックス中に含まれる巨視的な粒子集合構造が全体の材料特性や品質に大きく影響するため，複合材料の特性を総合的に把握するためには，微構造解析に加え，巨視的スケールでの粒子の分散・充填構造の解析も極めて重要になる。特に，後者において，機能発現に関わる粒子のパーコレーションや配向性等の集合構造だけでなく，その中に残存している凝集体，粗大粒子，気孔等の致命的な欠陥構造も検出対象となるであろう。

このような観点は，高分子材料中のフィラーの分散のみならず，多くの材料系において最近注目されている。例えば，セラミックスの分野では，光学特性を用いて成形体や焼結体を透光観察することにより，その内面に留まる微小欠陥の粗大欠陥，粗大粒子，さらには粒子配向等の不均質構造が観察され，材料の信頼性向上やコスト低減に大きく寄与している2).そこで，本稿では，粒相集合体の均質構造計測手法として，セラミッテクスの分野で行われている観察手法を紹介するとともに，粒子分散系への応用事例について説明を行う。

2. セラミックス材料分野における粒子集合構造の透光観察

植松らが開発した微細透光学法3)や薄片透光学法4)によって，ファインセラミックスの粒子群からなる粒子体や成形体さらには焼結体の内部構造が透光像として直接観察できるようになった。ここでは一例として微細透光学法について説明する。この方法は原料粒子に近い屈折率の液体を粒子間に入り込むと粒体内部での光の反射が抑制され試料が透明化されることを利用している。粒体内部に均一な分布構造，あるいは不純物が存在するとその領域では光散乱が大きくなるため薄く観察される。

透明化したアルミナ微粒子圧成形体の観察例を図1に示す5).この観察では，約150μmの薄片化された試料に，アルミナの屈折率(n=1.77)に近いヨードメタン(n=1.74)を浸漬として含浸させた，同図からわかるように，この成形体中には顕微鏡で検出することができるが，これまで顕微鏡による圧成形体においては観察して
図1 透過光法により観察したアルミナ成形体の内部構造（丸く見えるのが顆粒度）

均一になると考えられていたが、この観察結果からは顆粒の变形が起きるのみであることがわかる。ところが、顆粒状の暗い部分は、バインダーによって光が散乱されたことによるものである。したがって、顆粒界面では、表面に偏析していたバインダーの存在によって加圧成形時の密着化が図られている。この低密度な領域は一般に焼結によって拡大されるため、焼結後のセラミックスでは顆粒界面であった所に粗大な空隙が存在することがある。

次に粒子集合構造を偏向顕微鏡により観察する方法について簡単に説明する。方解石の複屈折現象に見られるように、多くのセラミックス材料や鉱物は、結晶が等軸晶系に属さず光学的異方性を示す。ポリマー系ナノコンポジット用のフィラー原料である層状粘土鉱物も光学的に異方であり、光学的2軸性結晶に分類される（図2参照）。そこで、液状により光学的に透明化した粉末層に直接照射を透明させると、粗大粒子が内蔵する場合には、この偏光に強く反応する。また、粒子が偏光すると、成形体全体として光学的異方性を持つことになり、偏光顕微鏡下で観察するとひび割れた単結晶と似た光学的反応を示す。

光学的異方性1軸性を持つアルミナ成形体では、偏光板を通じた直観偏光は各アルミナ粒子で振動方向を変えるのが薄片試料を通過する。試料中のアルミナ粒子が不規則に並んでいる場合、各粒子中での振動方向の変化は全体として打ち消されるため、入射光に対する透過光の振動方向の変化はほとんどない。一方、粒子が配列した構造体中では、振動方向の変化が少なくとも一部は失われ、透過光は偏光を受ける。後者の場合、直交ポーラーによる観察では、観察ステージ（試料）を面転すると90°每に消光する位置があり、この位置から45°回転した位置で最も明る

光学性：二軸性①
屈折率：α = 1.48〜1.61, β = 1.50〜1.64, γ = 1.50〜1.64

図2 モノモリサイトの結晶構造と光学的性質

図3 偏光顕微鏡によるアルミナテープ成形体の観察像（テープ面の透過像）
図 4 偏光顕微鏡によるアルミナテープ成形体の観察像（テープ断面の透過像）

図 5 偏光顕微鏡によるアルミナテープ成形体の観察像（対角線でのテープ断面の透過像）

の面面の厚さの変化はほとんど認められないことがわかる。一方、図 4 に見るように、テープ断面を通じた偏光像には、顕微鏡による厚さの変化が明瞭に認められる。これらの観察結果は、粒子配向がテープ断面内にほぼ全体にわたって存在することを示している。図 5 は図 4(b)の拡大像を示す。テープ成形体内に非常に厚さが高く、そのサイズが数 μm 以上のものが多く存在している。これらは粗大粒子である。この粗大粒子が着目すると、ほとんどが延伸した形状を有し、その長手方向がテープ面に平行に存在している。また、これらの粗大粒子は試料の回転において、テープ断面全体と同様の厚さ変化を示したことから、他の微粒子帯の充填構造も粗大粒子のそれとほぼ同様であることがわかる。つまり、成形体中では粒子の長手方向がテープ面に平行に配向するが、その向きはランダムで、この粒子充填構造は、テープ成形時のせん断力により形成されたものと考えられる。このような観察手法を用いて、プレス成形体の観察手法（Linken CSS450）
図7 アルミナスラリー（固体内濃度10vol%）の透光像
分散剤添加量（a）0.2mass%（b）0.4mass%

図8 アルミナスラリー（固体内濃度30vol%）の透光像
（a）せん断圧入後（b）1分後

3. 粒子分散系の透光観察

セラミックスラリー中の絮凝構造も、これまでに述べた透光観察を通じて得ることができる。図6において、筆者らが使用した市販システムのせん断流動可視化システム（Linkam, CSS450）を示す。図に示すように、2枚の石英版（丸形形状）の平行角度は2μm以内に設定され、下部の石英版（直径55mm）はタイミングベルトを介して外部モーターにより制御されて回転する。観察ウィンドウの幅は3mmであり、下部版の回転中心から観察ウィンドウの中心までの距離は75mmである。また、図には示していないが、別に軸応用モーターにより、2枚の石英版の距離を5～2500μm間の任意の値に設定可能である。

図7にアルミナ粒子を固体濃度10vol%加えたスラリーの透光像を示す。使用したアルミナ粉体の平均粒子径は約500nmである。図(a), (b)はそれぞれ見かけ粘度の高い絮凝系スラリー（0.2mass%）と見かけ粘度の低い分散系スラリー（分散剤添加量0.4mass%）の観察像である。実際、分散剤添加量が0.2mass%のスラリーにおいて、見かけ粘度がせん断速度の増加に伴って減少するshear thinningの流動特性が観察されたが、分散剤添加量0.4mass%の場合は、見かけ粘度は小さく、せん断速度の依存性がほとんど見られないとニュートン性流動を示した。図(b)はコントラストorgtがほとんどない像となっているが、この理由はスラリー中にサブミクロンサイズの粒子が均質に分散しているためである。また、光学顕微鏡の分解能では空間的に透過率の変化が観察者に現れないものと考えられる。一方、図7(a)においては、低い領域の多孔体型構造が観察される。ここで、凝集はスラリー中の粒子濃度が高いために透過率が低下した領域で、部品は粒子濃度が低く透過率が高い領域である。粒子濃度が高い領域は数μm程度（肉眼的にはそれぞれ）の薄い領域に不均質な構造を形成しているが、これが絮凝系スラリーの流動特性に関わる粒子凝集構造であると考えられる。

次に、せん断圧入した場合のスラリー中の粒子分散構造の観察結果について述べる。図8(a)において、10vol%の絮凝系スラリーにせん断圧入を1分間印加した後の透光像（スラリーが静止した状態）を示す。図8(b)に示すように1分間放置後の透光像は示す。せん断力はスラリーを狭めている2枚のガラス板の片方を回転させる
図9 エポキシ／シリカ複合材料の光学顕微鏡観察結果
(a)反射像、(b)透光像、(c)偏光像

ことにより与え、そのときの代表せん断速度は20秒×1とした。図8(a)に見られるように、せん断場の印加直後の像にスラリー構造の不均質性はほとんど観察されていないが、図8(b)に見られるように、1分間放置した後の像では明らかに粒子凝集構造が形成された。このように、本方法では、流中粒子の凝集状態のダイナミックな変化を直接観察することが可能である。それら、セラミックススラリー中の粒子分散状態の評価には、その球状化過程（ゲルキャピタイング）やスラリーを擬似的に固化して粒子分散・凝集状態を浸透透過光法により直接観察する方法などがある。

次に、この方法によるエポキシ樹脂／シリカ複合材料の透光観察結果について報告する。

4. おわりに

高分子材料中のナノ粒子の分散においては、粒子サイズや形状などの分布、プロセス工程で導入される粒子配向や気孔などの不均質構造などが、どのようにポリマー中の粒子集合体構造に影響しているのかを正しく理解し、材料特性の観点からそれらを高度に制御することが極めて重要となる。本研究では、これらの不均質構造を直接的なスケールで簡便に評価できるツールとして、光学顕微鏡を用いた透過光法について解説した。これらのマクロな観察技術とTEMやSEM等の微小構造解析技術を併用することにより、複合材料中の構造をより正確に捉えることができるもののと思われる。

参考文献

1）中条 清，ポリマー系ナノコンポジット，工業図書会（2003）
4）田中，セラミックス，39，(2004) 1010
5）阿部，内藤，関本，野田，大原，畠井，粉体工学会誌，Vol.41，(2004) 10
9）都城，久城，岩石学，1，共立全書，10章（1972）
10）阿部，関本，野田，畠井，粉体工学会誌，Vol.40，(2003) 163
12）K.Uematsu,H.Ito,S.Ohsaka,H.Takahashi,N.

13) 田中（分担執筆）、先進セラミックスの作り方と
使い方。日刊工業新聞社、5章（2005）

14) 高尾、神谷、内藤、大澤。電気学会論文誌A，
Vol.121, (2001) 1019

Caption

Fig. 1 An internal structure of alumina green body
by liquid immersion method

Fig. 2 Crystal structure and optical property of
montmorillonite

Fig. 3 Crossed Polarized light micrographs of Tape
cast alumina green body

Fig. 4 Crossed Polarized light micrographs of tape
cast alumina green body (Cross sectional
view)

Fig. 5 Crossed Polarized light micrographs of tape
cast alumina green body (Cross sectional
view)

Fig. 6 Direct observation technique of powder
agglomerate structure in slurry (Linkam,
CSS450)

Fig. 7 Transmitted images of slurry with 10 vol%
solid loading Dispersant content: (a) 0.2 vol%
(b) 0.4 vol%

Fig. 8 Influence of shear stress on powder agglomerate
structure in 30 vol% alumina slurry with
0.2 wt% dispersant.
(a) just after applying shear, 20s-1 for 1 min
(b) 1 min after

Fig. 9 Optical micrograph of SiO2 powder filled
epoxy resin composite film
ナノ粒子プロセスを適用した固体酸化物形燃料電池
低温作動スタック開発に向けて

(株)ホソカワ粉体技術研究所

福井 武久

1. はじめに
燃料電池は、クリーンかつ高効率な新エネルギー発電システムとして注目され、国内外で広く研究開発が繰り広げられている。この燃料電池は発電量の種類により、いくつかのタイプに分類され、100℃以下の低温で作動する固体高分子形燃料電池（PEFC）の開発が最も進められている。それに対して、当社では発電量が最も大きい固体酸化物形燃料電池（SOFC：Solid Oxide Fuel Cell）に着目し、その開発を2002年10月に開始している。

燃料電池の発電性能、効率や信頼性は構成する部材の素材、組成ならびに構造に強く依存し、それらの制御が重要な発電課題となっている。これらの制御には、その原材料となる粉末の特性と構造ならびにその粉末を用いた粉末形成技術が重要な役割を果たし、原料となる粉末の合成から製造に至る広い材料技術が開発促進のキーテクノロジーと言えることができる。特に、発電性能向上には、部材構造の微細化が不可欠であり、ナノサイズ化による性能の飛躍的な向上が期待されている。また、従来のSOFC開発では発電作動温度が約1000℃と高温のため、部材やその集合体であるセル・スタックならびにシステムの耐久性、信頼性向上が課題となり、実用化の大きな妨げとなっていた。そのため、近年、作動温度を800℃以下に低減し、部材やセル・スタックの耐久性と信頼性の向上ならびにコスト低減を図り、実用化を加速させる研究開発が活発化している。

当社では、これらの開発課題を克服するため、独自のナノ粒子技術をプロセスを適用した研究開発を進め、ナノからミクロレベルの部材構造制御によるSOFC作動温度の低温化（700℃程度まで）を達成している。さらに、SOFCの実用化に資するため、その成果を基にした電極材料とセルのサンプル供給を開始するとともに、発電システムの心臓部であるスタック開発を開始している。本講演会では、これまでの成果とともに、高性能なスタック開発に向けた取り組みを紹介する。

2. ナノ粒子技術を適用したSOFCの高性能化
燃料電池の構成は通常の電極と同様で、電極を二枚の電極で挟み込んだ三層構造体（セル）となっている。この発電の最小単位であるセルをセパレータでつなぎ合わせて積層化（スタック化）し、発電の心臓部であるスタックが形成される。SOFCでは、空気極（カソード）でイオン化された酸化物イオン（O²⁻）が電解質（Y₂O₃-安定化ZrO₂（YSZ）等）を燃料極（アノード）へと移動し、水素（H₂）等燃料との電気化学反応により水が生成する。この電気化学反応により、燃料の持つ化学エネルギーが直接電気として取出されることになる。

単セルの発電力は約1Vであり、電気を取り出すこと（発電）により、セルの内部抵抗に伴う電圧降下が生じる。この端子電圧の降下は、セル構成部材の抵抗

Development of Intermediate-Temperature Operated Solid Oxide Fuel Cell Applying the Nanoparticle Processing
Takechisa FUKUI, Dr. Eng.
ホソカワ粉体技術研究所 研究開発本部

Operating Officer, Division Head, Research & Development Div. Hosokawa Powder Technology Research Institute

連絡先：〒573-1132 兵庫県神戸市垂水区道元通1-9
E-mail：TFUKUI@hmch.hosokawa.com

— 68 —
であるIR抵抗と電極反応に伴う反応分極の和から成る。これらの分極が少ないと、大きな出力を取り出すことができ、分極低減が燃焼電池の性能向上につながる。構成材料の抵抗としてはイオンが移動する電解質が最も大きく、電解質のIR抵抗の低減が不可欠である。また、低温作動時には電極反応分極が増大し、その低減が重要となる。したがって、イオン導電性の高い新鮮な電解質材料の開発や、電極質の微細化ならびに電極反応活性の向上が燃焼電池の性能向上をもたらすことになる。

2.1 電極構造制御による性能向上

燃焼電池の電極の中では、電気化学反応が進行すると共に、電子とイオンの流れ、反応ガスや生成ガスの拡散等が同時に進む。高効率な発電を維持するために、これらの機能を保つ電極を設計する必要があり、電極の構造制御が重要となる。SOFC電極の機能と要求される性能ならびに微細構造の関連を図1に示す。電極性能の向上には、構成粒子を微細・高分散化させるとともに適度な細孔径を持つ均一な多孔体構造の形成が必要なことが分かる。

当社の持つ微粉砕や分級等粉体処理技術ならびにナノ粒子の分散・複合化技術を適用し、電極構造制御に

表1 SOFC電極の機能と微細構造

<table>
<thead>
<tr>
<th>機能</th>
<th>要求性能</th>
<th>微細構造</th>
</tr>
</thead>
<tbody>
<tr>
<td>電気化学反応</td>
<td>高活性（燃料や酸素に対する）広い反応界面（三相界面）</td>
<td>電極構成粒子の微細化と均質かつ高分散化</td>
</tr>
<tr>
<td>電子パス、イオンパス</td>
<td>低抵抗</td>
<td>電極構成粒子のつながり</td>
</tr>
<tr>
<td>ガス拡散</td>
<td>水素等の燃料拡散と水等の生成物の速やかな排出</td>
<td>適正な細孔径と均一な多孔体構造</td>
</tr>
<tr>
<td>熱安定性</td>
<td>作動温度での高い形状安定性</td>
<td>電極粒子の粒成長抑制</td>
</tr>
</tbody>
</table>

図1 Ni-YSZサーメット燃料電極の微細構造

図2 Ni-YSZサーメット燃料電極の分極曲線
性能を示している。この高性能化は均一な多孔体構造に加え、NiとYSZ複合粒子の微細、高分散化によるものと考えられる。

開発したLSCF空気極の微細構造を図3に示す。本空気極は数百万nmの微細な粒子で構成されているとともに密度な多孔体構造となっていることが確認できる。このLSCF空気極は800℃以下の低温作動で非常に高い電極性能（電極分解電位：0.1V以下@700℃、負荷電流密度0.5A/cm²）を達成しており、SOFCの低温作動化を可能としている。

2.2 燃料極支持型セルの試作とスタック発電実証

低温作動では電解質のイオン導電率が大きく低下するため、セルのIR抵抗が増大し、発電性能が著しく低下する。このIR抵抗を低減するために、電極支持構造による電極温度調和を試みている。この構造は、燃料極又は空気極によってセルの機械的強度を維持し、構造体とするものであり、電極温度を数十分μmで薄くすることが可能である。高性能な電極開発を併せて、テーブ成型技術を活用した燃料極支持型電極開発の開発を進め、作動温度700℃において、世界トップレベルの高性能セルの開発に成功している。

さらに、120mmφの大面積セルを、高圧セラミックスを介して形成したスタックを試作し、発電実証も実施した。実証の一例として、10セル・スタックでの発電実験を図4に示す。700℃作動にて、約300Wの発電が可能であり、開発した高性能セルのスタック化が実現された。

3 高性能スタック開発への取り組み

これまで述べたように、独自のナノ粒子技術、粒子複合化技術を含むナノからミクロレベルのセル内構造制御により、セルの高性能化を達成するとともに、スタック化の可能性を確認した。本成果を基に次のステップとして高性能スタックの開発を開始している。その取り組みの一例を紹介する。図5は、26mmφ小型セル発電性能（電流-電圧（I-V）及び電流-出力（I-P）性能）と120mmφ大型セルのスタック状態での発電性能を示したものである。26mmφセルの出力は、低燃料利用率（UF=約15%）で得られた結果であり、セルの大面積化とスタック化ならびに燃料利用率での作動により、その出力密度（0.3W/cm²、UF=50%〜0.2W/cm²、UF=80% @0.7V）が約1/3に低下していることが分かれる。

詳細な発電性能解析の結果、この出力の大幅な低下は、主に、燃料極性能の低下（燃料極電流密度：ηnの増大）
とスタッフ内部抵抗（IRロス）の増大により引き起こされ、その主因は以下のように分析される。
(1) 燃料利用率増加による電極内ガス抵抗の低下
→燃料極分極 (ηa) の増大 (特に濃度分極)
(2) 大面積及びスタッフ化による電極内ガス供給の不均一化
→電子極分極 (ηζ) 及び空気極分極 (ηc) の増大
(3) スタック内のセル/集電体/セパレータ間接触抵抗の増大
→スタッフ内部抵抗 (IRロス) の増大
(4) スタック内のセル/集電体/セパレータ間面内圧力の不均一化
→スタッフ内部抵抗 (IRロス) の増大

現在、これらの発電性能低下要因それぞれに対して対策を施し、高性能スタッフの達成を目指している。例えば、“(1)燃料利用率増加による電極内ガス抵抗の低下”に対しては、燃料極の気孔構造の制御により、電気化学反応による生成ガス (水蒸気) の電極外への排出性を改善して高燃料利用率を達成することを目指している。そのためには、適正な電極構成粒子分散構造を設計する一方で、原料微細構造 (粒径、粒子分布及び形状)、スラリー特性、チップ成形条件や焼結条件等の最適化を図ることが必要である。また、“(2)大面積及びスタッフ化による電極内ガス供給の不均一化”に対しては、実験スタッフに対応したセパレータ形状、流路パターンおよび換気等最適化を図った金属セパレータ開発を開始している。最終的には、単位面積あたり、0.4kW/cm²を超える高発電効率スタッフの開発を目指している。

4. まとめ

独自のナノ粒子技術、粒子複合化技術とそれらを用いたプロセスを適用したナノからミクロレベルの部材構造制御により、セルの高性能化を進め、700℃の低温作動にて世界トップレベルの高性能セルを開発した。さらに、そのセルの大面積化とスタッフ化による発電の可能性を確認した。これらの成果をマイルストーンとし、現在、高性能スタッフ開発の取り組みを開始している。高性能スタッフはSOFCの高効率化に大きく貢献するものであり、将来的に、この高性能スタッフをSOFCシステムへと適用し、高効率な定電型発電システム実現へと結び付けて行く予定である。

引用文献

Caption
Fig. 1 Morphology of Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder.
Fig. 2 Overpotential of Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder.
Fig. 3 Morphology of LSCF cathode.
Fig. 4 Performance of 10 cell stack at 700℃
Fig. 5 Performance curve of several single cells consisted of Ni-YSZ/YSZ/LSCF
Table 1 Relationship between function and morphology of SOFC electrodes.
ナノ粒子デザインによる化粧品、育毛剤開発などへの展開

(株)ホソカワ粉体技術研究所
辻本 広行, 原 香織

1. はじめに

当所の美容科学研究所では、NEDO（新エネルギー・産業技術総合開発機構）の平成13年度基盤技術研究促進事業のナノテクノロジー分野において、平成14年1月より平成17年3月までの期間、研究開発助成金を受けて、「生体適合性高分子である乳酸・グリコール酸共重合体（PLGA）ナノコンポジット粒子を応用したDDS（Drug Delivery System、薬物送達システム開発）をテーマとする研究開発に取り組んできた。

この中で、ナノ粒子製剤としては、薬物/生体適合性高分子系を取り上げ、物理化学的手法によるナノスフェア化と、無色のメカニカルな粒子複合化法（乾式圧縮せん断法、湿式流動複合形成法）によってナノスフェアの集合体構造を制御しつつ、実用に通じたマイクロサイズのナノ複合粒子を製造しようハイブリッドでオリジナルな製法プロセスを開発し、最終目標としているロイナノコンポジットパウダー型経皮製剤への適用を進めている。

本技術のその他の応用例として、使用効果の高いビタミン誘導体や育毛効果を持つ生薬エキスをナノスフェアに内包したナノコンポジット粒子設計・加工技術を確立した。

これらのナノ粒子デザインされた機能性ナノパウダーは皮膚浸透性に優れており、例えば、ビタミン封入ナノスフェアは水に分散され、これを皮膚に塗布するだけで皮膚深部への高いビタミン供給能を示した。また、実際の美容液に配合することで、高いホワイトニング・アンチエイジング（抗老化）効果が実証できたことから、高機能ナノ化粧品として昨年10月に上市11した。また最近では、生薬エキス封入ナノスフェアはナノ発毛・育毛剤への効果12が確認された。本報では、当美容科学研究所で進めているこれらの関連技術の一端を紹介する。

2. 高分子ナノスフェアのナノコンポジット化技術と経皮製剤への応用例

当所では生体適合性で生体内吸収性のPLGAやPAL（乳酸・アスパラギン酸共重合体）14を独自製法で薬物封入高分子ナノスフェア粒子にし、さらに微粒子のナノ複合粒子設計製造技術によってナノコンポジット製剤にしている。図1に経皮製剤用ナノコンポジット粒子の製造手法15を示す。

DDS製剤の設計において、高分子ナノ粒子は薬物送達キャリアとして、自身の体内外動態を精密に制御して、効率よく薬物を患部（病気の治療作用点）に送達する役割に加え、副作用などの弊害を回避しつつ、薬物を望ましい濃度－時間パターンのもとで長期間に渡り徐放させ、最適な治療効果を上げるような機能性が期待される。

特に当所で開発した高分子ナノコンポジット粒子の応用として、患者のQuality of Life（QOL）を高める
図1 ナノDDS吸入製剤設計のためのナノスフェア粒子設計、加工技術
物理化学的手法と機械式粒子複合化法の組み合わせによる高分子ナノコンポジット粒子
の製剤例

る薬物の薬効成成は経皮投与によって、糖尿病治療薬
のインスリン、降圧治療薬、有効性する症候性疾患等が
有効性されている。既にインスリン製剤については、
小動物（ラット）試験77)を経て、ヒト臨床においてピー
グル効果を実証することが要としており、ナノスフェアの特徴
を反映した良好な結果89)を得ている。一例として図
2にビーグル犬にインスリン封入PLGAナノコンポ
ジット製剤を投与した際の血糖値の推移を示す。皮下
注射法と比べ約3.5倍の高い薬剤効果（血糖値下降能
（時間-濃度曲線上面積/インスリン投与量））が示され
ている。特に、血糖値プロファイアルは、皮下注射と同
等以上の持続性と皮下注射では見られなかった持続安
定性が示された。これらはナノスフェアが誘導吸収性
部位の微細化により薬物吸収されていることと、加
水分散によりナノスフェアからインスリンが拡散され
ているためと考察され、このインスリンの徐放特性か
ら基礎インスリンレベルの持続にも貢献しうる可能性
が示唆された。

3. 美化、抗シワ機能を目指したナノ化製品

3.1 シミ・シワ発生メカニズムとピタミンの薬理効果
多くの女性が抱える肌の悩み、それは「シミ」と「シ
ワ」である。シミがなぜ出来るのか？は完全に解明さ
れているわけではないが、一般的には紫外線の差による
紫外線から皮膚を防御するメラニンの代謝機能の乱れ
が原因とされる。メラニンは表皮基底層に存在するメ
ラニンケラチン由来の角質細胞である。紫外線が表皮
基底層に浸入するとメラニン生成を促す情報伝達物質
が生成され、受容体を介してメラニン生成内に浸入し
、メラニンが活性化されメラニン生成が進行する。
この生成メラニンは皮膚のターンオーバーやマクロ
ファジー作用に伴って最終的に分解・消失する。つ
まり、シミは紫外線の過剰照射によるメラニンの過剰

<table>
<thead>
<tr>
<th></th>
<th>ピーグル犬におけるインスリン吸収力</th>
<th>AUC</th>
<th>過剰効果</th>
<th>過剰効果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mean±SD)</td>
<td>(min)</td>
<td>(max)</td>
<td>(mean±SD)</td>
</tr>
<tr>
<td></td>
<td>70.3±10.6</td>
<td>300</td>
<td>600</td>
<td>78.6±12.3</td>
</tr>
<tr>
<td></td>
<td>60.2±10.5</td>
<td>250</td>
<td>350</td>
<td>72.8±13.7</td>
</tr>
<tr>
<td></td>
<td>50.1±10.4</td>
<td>200</td>
<td>300</td>
<td>64.7±14.0</td>
</tr>
</tbody>
</table>

図2 ビーグル犬に対するインスリン封入PLGAナノコンポジット製剤の薬理効果
産生やターンオーバー進行によるメラニンの代謝遅延により発生している。シワの発生原因については様々であるが、紫外線可変の活性酸素などによる真皮層を構成するヒトヒト皮膚細胞の傷害や死滅によって、皮膚のハリや形を保つ機能コラーゲン繊維、エラスチン繊維、ヒアルロン酸などの変質、さらにはターンオーバーの不調による角層の肥厚、水分量の低下によって引き起こされる。

これらのシミ・シワの改善には、ビタミンC、E、Aの摂取が有効であることが知られている。ビタミンCはメラニン産生を促進するチロシンキナーゼ活性を阻害することによりシミを抑制する。また、コラーゲン産生促進作用によってシワを改善するとともに、活性酸素による細胞の酸化抑制作用も支持。ビタミンEも同様の抗酸化作用を持ち、ビタミンAはコラーゲン産生促進作用が極めて高い。従って、ホワイトニングやアンチエイジング化粧品にはビタミンCやその誘導体を配合したものが目立つが、十分な効果を実現出来る商品はそれほど多くない。これは皮膚の基底層の角質層がハリとなりシミを増やす等の有効成分の吸収率を著しく下げているためである。また、ビタミンCは通常の環境下では分解しやすいので、効果を求めるには酸化分解、光に対する安定性や皮膚浸透性を高める機能的な工夫が必要である。

3.2 ナノ化製品

表1に示すように、「ナノサイズ」や「ナノ粒子」などの「ナノ・テクノロジー」を求める化粧品はここ数年かなり多く見られるようになった。これらの中に、スキンケア製品（クリーム、化粧水、美容液など）の多くは、有用成分を超低圧乳化法などによって皮膚細胞間隙（70nm）よりも微小な数10nmのサイズにナノ化して、皮膚内部への浸透性向上を図る商品である。しかし、スキンケア製品のナノ化製品として多用されるリポソームなどのナノ液滴系キャリアは構造安定性が低い。すなわち、細胞間を通過する際、内部に付着し、リン脂質自体の一部が破壊して内包成分の漏出が生じるので、有用成分を皮膚深部へ送る能力はそれほど高くないと言われる。一方、生体適合性で吸収性の高分子（PLGA, PAL）ナノスフェアや炭酸カルシウム塩を基盤とした形態安定性の良い固体ナノ微粒子系キャリアが化粧品に実用されるようになった。

当所では、PLGAナノスフェアに3種のビタミンCを

図3 VC-IP封入PLGAナノスフェアによる皮膚深部へのビタミンC供給システム

導体（ビタミンC誘導体：チロシンキナーゼ阻害物質N-2ビルビン以下VC-IP、ビタミンE誘導体：抗酸化トコフェロール、ビタミンA誘導体：パルミチン酸レチノール）をそれぞれ封入し、それらを高濃度水溶液で用い混ぜて試験し、ベトナム皮膚試験で発生した皮膚表面を観察してみた。このナノスフェアの平均粒子径は200nmであるが、このサイズは被験者の皮膚試験試験から、毛穴（200〜300nm）だけでなく角質層を浸透するその分子径として見出されている。PLGAナノスフェアの役目は、ビタミン誘導体を内包し、また皮膚基底層のメラニン抑制や真皮層の繊維芽細胞へ浸透させ、皮膚内膜の水分によって自ら加水分解することで、内包していたビタミン誘導体を長時間（ビタミンCの例では後述するように48時間以上）に掛けて徐放することになる。放出されたビタミン誘導体は体内代謝によりビオアビタミンに変換され、図3に示す薬効をターゲット部位付近で発現することになる。

スキンケア製品として、美白、抗シワ・たるみ機能を獲得し高機能化を図るには、ビタミン誘導体やアミノ酸などの有用成分をナノ化し、ターゲット部位に安定した状態で浸透させ薬効を発揮させるうるキャリア粒子技術が必要であり、その意味ではDDSのナノ薬物設計の考えが大切である。

以下に、PLGAナノスフェアの皮膚浸透性評価とその二次効果、機能性化粧品としての美白・抗シワ効果、育毛剤などの応用について述べる。

4. PLGAナノスフェアの皮膚浸透評価と二次効果

4.1 PLGAナノスフェアの皮膚浸透性評価

ナノスフェアの皮膚浸透性評価は三羽らの改変
<table>
<thead>
<tr>
<th>額外会社</th>
<th>ブランド名</th>
<th>製品名</th>
<th>内容量 (ナノスケール)</th>
<th>價格</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>コージー</td>
<td>ルテチア ナノフーズ</td>
<td>オイルクレンジングジェル</td>
<td>150g</td>
</tr>
<tr>
<td>2.</td>
<td>コージー</td>
<td>ルテチア ナノフーズ</td>
<td>シュバンクリアオーシャン</td>
<td>130g</td>
</tr>
<tr>
<td>3.</td>
<td>コージー</td>
<td>ルテチア ナノフーズ</td>
<td>オレンジクレンジングクリーム</td>
<td>130g</td>
</tr>
<tr>
<td>4.</td>
<td>コージー</td>
<td>ルテチア ナノフーズ</td>
<td>クレンジングゲル</td>
<td>180mL</td>
</tr>
<tr>
<td>5.</td>
<td>コージー</td>
<td>ナノフーズ</td>
<td>オレンジクレンジング</td>
<td>130g</td>
</tr>
<tr>
<td>6.</td>
<td>全家工業</td>
<td>アルファジェ</td>
<td>クレンジングジェル</td>
<td>93g</td>
</tr>
<tr>
<td>7.</td>
<td>サイエンス</td>
<td>ウォッシュバインダー</td>
<td>ホイップインバインダー</td>
<td>120mL</td>
</tr>
<tr>
<td>8.</td>
<td>ドクターコール</td>
<td>ウォッシュバインダー</td>
<td>マイドレジン</td>
<td>120mL</td>
</tr>
<tr>
<td>9.</td>
<td>アイキューブ</td>
<td>マイドレジン</td>
<td>マイドレジン</td>
<td>100g</td>
</tr>
</tbody>
</table>

化粧水

<table>
<thead>
<tr>
<th>額外会社</th>
<th>ブランド名</th>
<th>製品名</th>
<th>内容量 (ナノスケール)</th>
<th>價格</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>コージー</td>
<td>ルテチア ナノフーズ</td>
<td>ホイップ・ニングロッシュ</td>
<td>180mL</td>
</tr>
<tr>
<td>2.</td>
<td>全家工業</td>
<td>アルファジェ</td>
<td>ホイップ・ニングロッシュ</td>
<td>150mL</td>
</tr>
<tr>
<td>3.</td>
<td>サイエンス</td>
<td>ウォッシュバインダー</td>
<td>ホイップインバダー</td>
<td>120mL</td>
</tr>
<tr>
<td>4.</td>
<td>ドクターコール</td>
<td>ウォッシュバインダー</td>
<td>マイドレジン</td>
<td>120mL</td>
</tr>
<tr>
<td>5.</td>
<td>アイキューブ</td>
<td>マイドレジン</td>
<td>マイドレジン</td>
<td>100g</td>
</tr>
</tbody>
</table>

美容液

<table>
<thead>
<tr>
<th>額外会社</th>
<th>ブランド名</th>
<th>製品名</th>
<th>内容量 (ナノスケール)</th>
<th>價格</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>コージー</td>
<td>ルテチア ナノフーズ</td>
<td>エッセンスコンセントレート</td>
<td>80mL</td>
</tr>
<tr>
<td>2.</td>
<td>全家工業</td>
<td>アルファジェ</td>
<td>クレンジングゲル</td>
<td>180mL</td>
</tr>
<tr>
<td>3.</td>
<td>ドクターコール</td>
<td>ウォッシュバインダー</td>
<td>マイドレジン</td>
<td>120mL</td>
</tr>
<tr>
<td>4.</td>
<td>アイキューブ</td>
<td>マイドレジン</td>
<td>マイドレジン</td>
<td>100g</td>
</tr>
<tr>
<td>5.</td>
<td>サイエンス</td>
<td>ウォッシュバインダー</td>
<td>マイドレジン</td>
<td>120mL</td>
</tr>
<tr>
<td>6.</td>
<td>ドクターコール</td>
<td>ウォッシュバインダー</td>
<td>マイドレジン</td>
<td>100g</td>
</tr>
<tr>
<td>7.</td>
<td>アイキューブ</td>
<td>マイドレジン</td>
<td>マイドレジン</td>
<td>100g</td>
</tr>
<tr>
<td>8.</td>
<td>サイエンス</td>
<td>ウォッシュバインダー</td>
<td>マイドレジン</td>
<td>120mL</td>
</tr>
</tbody>
</table>

以上の製品は、ナノスケールの技術を活かして、肌に優しく、効果的な化粧品を目指しています。
<table>
<thead>
<tr>
<th>No</th>
<th>売上会社</th>
<th>ブランド</th>
<th>品目名</th>
<th>内容量</th>
<th>ナノサイズ個数（個数／袋）</th>
<th>素材内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ノエピア</td>
<td>スペチユーレ</td>
<td>業務クリーム</td>
<td>45g</td>
<td>100m</td>
<td>1,350円</td>
</tr>
<tr>
<td>2</td>
<td>サクラ化粧品</td>
<td>バラニオ</td>
<td>ACクリームエクストラ</td>
<td>30g</td>
<td>50m</td>
<td>3,590円</td>
</tr>
<tr>
<td>3</td>
<td>ニューラルテディーズ</td>
<td>ナイトエッセンス</td>
<td>グリーンクリーム</td>
<td>40g</td>
<td>1,750円</td>
<td>4,725円</td>
</tr>
<tr>
<td>4</td>
<td>全家工業</td>
<td>アルジェ</td>
<td>エクスプレスミルクガム</td>
<td>35g</td>
<td>1,950円</td>
<td>2,370円</td>
</tr>
<tr>
<td>5</td>
<td>全家工業</td>
<td>エルジェ</td>
<td>モイストストレートオイル</td>
<td>50mL</td>
<td>3,590円</td>
<td>2,960円</td>
</tr>
<tr>
<td>6</td>
<td>全家工業</td>
<td>エルジェ</td>
<td>ウォーターシャンプー</td>
<td>35g</td>
<td>1,950円</td>
<td>2,640円</td>
</tr>
<tr>
<td>7</td>
<td>シュガーショコラ</td>
<td>ナノスゲー</td>
<td>再使用目的クーム</td>
<td>40g</td>
<td>1,750円</td>
<td>1,575円</td>
</tr>
<tr>
<td>8</td>
<td>エフロン</td>
<td>グローティク</td>
<td>ヴァーサイドフェイスオイル</td>
<td>30g</td>
<td>1,750円</td>
<td>3,590円</td>
</tr>
<tr>
<td>9</td>
<td>トリコンコーチェル</td>
<td>スキンケアクリア</td>
<td>ナノエッセンスクリア</td>
<td>30g</td>
<td>1,950円</td>
<td>8,400円</td>
</tr>
<tr>
<td>10</td>
<td>デミエ</td>
<td>ナイトワイルドクリア</td>
<td>55g</td>
<td>1,950円</td>
<td>3,150円</td>
<td>ナノテクノロジーが配合した（ナノ粒）が発見されている成分</td>
</tr>
<tr>
<td>11</td>
<td>ダイタカゴー</td>
<td>プラスラディアシャンプー</td>
<td>GINZAADA</td>
<td>30g</td>
<td>1,950円</td>
<td>15,750円</td>
</tr>
<tr>
<td>12</td>
<td>株式会社トカラ</td>
<td>トリプルクリーム</td>
<td>GINZAADA</td>
<td>30g</td>
<td>1,950円</td>
<td>18,600円</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>売上会社</th>
<th>ブランド</th>
<th>品目名</th>
<th>内容量</th>
<th>ナノサイズ個数（個数／袋）</th>
<th>素材内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>カネボウ</td>
<td>ALLLEフレー</td>
<td>EXキャットクリーンクリーム</td>
<td>55mL</td>
<td>90m</td>
<td>2,940円</td>
</tr>
<tr>
<td>2</td>
<td>カネボウ</td>
<td>ALLLEフレー</td>
<td>スキンケアクリア</td>
<td>55mL</td>
<td>36m</td>
<td>2,940円</td>
</tr>
<tr>
<td>3</td>
<td>カネボウ</td>
<td>ALLLEフレー</td>
<td>ハイドレーション</td>
<td>55mL</td>
<td>36m</td>
<td>2,940円</td>
</tr>
<tr>
<td>4</td>
<td>ボラジア</td>
<td>ポディクリア</td>
<td>ナノエッセンスクリア</td>
<td>55mL</td>
<td>36m</td>
<td>2,940円</td>
</tr>
<tr>
<td>5</td>
<td>コーナー</td>
<td>ナノエッセンス</td>
<td>再使用目的クーム</td>
<td>40g</td>
<td>1,750円</td>
<td>2,310円</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>売上会社</th>
<th>ブランド</th>
<th>品目名</th>
<th>内容量</th>
<th>ナノサイズ個数（個数／袋）</th>
<th>素材内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>招生堂</td>
<td>リバパルト</td>
<td>リッチパウダーコットン</td>
<td>12g</td>
<td>90m</td>
<td>6,520円</td>
</tr>
<tr>
<td>2</td>
<td>カネボウ</td>
<td>ALLLEフレー</td>
<td>スーパークリア</td>
<td>26mL</td>
<td>90m</td>
<td>3,150円</td>
</tr>
<tr>
<td>3</td>
<td>カネボウ</td>
<td>ALLLEフレー</td>
<td>シェルタックスミル</td>
<td>26mL</td>
<td>90m</td>
<td>2,940円</td>
</tr>
<tr>
<td>4</td>
<td>花王</td>
<td>タイトプラウンドプルーフ</td>
<td>50g</td>
<td>100m</td>
<td>3,960円</td>
<td>ナノテクノロジーを配合、高密性化水化物</td>
</tr>
<tr>
<td>5</td>
<td>ミヨシ</td>
<td>フェイスパウダー</td>
<td>フェイスパウダー</td>
<td>50g</td>
<td>100m</td>
<td>3,150円</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>売上会社</th>
<th>ブランド</th>
<th>品目名</th>
<th>内容量</th>
<th>ナノサイズ個数（個数／袋）</th>
<th>素材内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ノエピア</td>
<td>エコピア</td>
<td>カラスティック</td>
<td>12g</td>
<td>90m</td>
<td>5,980円</td>
</tr>
<tr>
<td>2</td>
<td>ノエピア</td>
<td>エコピア</td>
<td>スーパーペーパーアイロン</td>
<td>20mL</td>
<td>90m</td>
<td>3,150円</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>メイク</th>
<th>No</th>
<th>売上会社</th>
<th>ブランド</th>
<th>品目名</th>
<th>内容量</th>
<th>ナノサイズ個数（個数／袋）</th>
<th>素材内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>コーセー</td>
<td>ルミネックス</td>
<td>ナノフィルメルク</td>
<td>100mL</td>
<td>90m</td>
<td>3,150円</td>
<td>ナノテクノロジーを配合、高密性化水化物</td>
</tr>
<tr>
<td>2</td>
<td>コーセー</td>
<td>ルミネックス</td>
<td>ナノフィルメルク</td>
<td>100mL</td>
<td>90m</td>
<td>3,150円</td>
<td>ナノテクノロジーを配合、高密性化水化物</td>
</tr>
<tr>
<td>3</td>
<td>コーセー</td>
<td>ルミネックス</td>
<td>ナノフィルメルク</td>
<td>100mL</td>
<td>90m</td>
<td>3,150円</td>
<td>ナノテクノロジーを配合、高密性化水化物</td>
</tr>
<tr>
<td>4</td>
<td>ボラジア</td>
<td>プラスラディア</td>
<td>ナノエッセンス</td>
<td>90m</td>
<td>90m</td>
<td>8,400円</td>
<td>ナノテクノロジーを配合、高密性化水化物</td>
</tr>
</tbody>
</table>
クマリン封入PLGAナノスフェアの0.2%水分散液（クマリン濃度：0.0001wt%）を塗布し、共焦点ラメラレーザー顕微鏡観察による浸透分布を示す。ここではクマリン水分散液の動的光散乱法による体積基準平均粒子径は4.63μmであって、サブミクロン領域の粒子を15wt%含み、PLGAナノスフェアに比べ、粒子径は小さいものの、長時間の安定でより物が生じないことから、皮膚に塗布する皮疹の薬剤化剤料モデルとしては適当である。

クマリン分散液を塗布しても皮膚表面に浸透しにくい。一方、クマリンをナノスフェアで包封すると、単独塗布の10万分の1の微量分散液にもかかわらず1.86mmまで深く浸透し、毛穴への浸透性も大きく向上していることが判る。また、ここでは示さないが毛穴の存在しない無孔皮膚片でもナノスフェアの浸透促進効果が認められている。このような効果はPLGAナノスフェアの一部が角質層の亀裂間隔を直接通過できる粒子径にあたることと、皮膚表面に塗布したPLGAナノスフェアの分散液中のナノスフェア表面に角質層内成分を吸着して、この吸着と皮膚の表面エネルギー低下しナノスフェアは角質層内に拡散、浸透する走行性を獲得した結果と考えられる。

4.2 VC-IP封入PLGAナノスフェアによるビタミン供給効果

経皮浸透性を実証されたPLGAナノスフェアをスキンケア製品へ応用するにあたり、VC-IPを封入したPLGAナノスフェアによる皮膚障害へのビタミンC供給能とその二次効果を調査した。VC-IPは、ビタミンCの4つもの水酸基をすべて脂肪酸でエステル結合させた構造の溶液性であり、皮膚内に存在するエステラーゼ
によって徐々に脂質酸化されることでビューピタミンCとしての持続的な作用効果が期待される。

本報では、VC-IP封入PLGAナノスフェアの75wt％水分解液、この比較対照のVC-IP水分解液（O/W乳化法）を、健常な女性の上顎から摘出した皮膚片へ塗布した。いずれもVC-IP濃度は1.0wt％である。この乳化法の動的光散乱法による平均液滴径は276nmであり、PLGAナノスフェア液の比較対照では適当であると考えた。一定時間経過後、表皮ならびに真皮を分離し、各々に含有されるビタミンC量をHPLC、クーロメトリックBODにより計測した。

図6(左)は、表皮ビタミンC（還元型ビタミンC＋酸化型ビタミンC）量の変化、真皮部での経時変化を示す。従来のVC-IP水分解液（乳化）の塗布では、ビタミン検出量も低く、18時間後には検出されていない。一方、PLGAナノスフェアに内包させる上、7日間で検出されビタミンの濃縮化が示された。化粧品の場合、より短時間での即効性も求められる。そこで、図6(右)は真皮中の還元型ビタミンC濃度を経時で細かく評価した結果である。VC-IP単独液と比較してVC-IP封入PLGAナノスフェア水分解液は2時間後でも還元型ビタミンCが検出されるにとどまり、時経後の検出値は約10倍以上もの高値を示した。

これにより、VC-IPを単に塗布するだけでは分子間の凝集のために皮膚組織間にたえつつ、PLGAナノスフェアに存在することによって、角質層を通過しつつ安定なまま皮膚深部まで運ばれる。その後、PLGAの加水分解に伴うVC-IPの放出作用と同時に、エステラーゼによるビューピタミンCへの代謝作用があるが、ナノスフェア表面に存在したVC-IPは単独的に寄与したと考えられる。これらのことがから、PLGAナノスフェアは本来皮膚深部まで運ばれる難癖的なビタミンCを皮膚深部を供給し、即効性かつ持続的に作用させるとためのナノ粒子キャリアとして有用であることが判った。

4.3 VC-IP封入PLGAナノスフェアによる紫外線防御効果

紫外線の破壊作用により、皮膚上に到達する紫外線を防御するため、PLGA ナノスフェアを用いることが考えられる。PLGA ナノスフェアは紫外線を通過し、皮膚深部まで運ばれることが確認されている。したがって、PLGA ナノスフェアは紫外線防御に有用であると考えられる。
5. PLGAナノスフェアを応用した機能性化粧品

前述したように、ビタミン剤を内
PLGAナノスフェアの二密な構造が検証
できたので、これらの性能を発揮する
ホワイトニング・アンチエイジング
スキンケア製品を開発した（図8、ホ
ソフトワミクロン化粧品）。左奥：ナノク
リスフェアプライムセラム（機能性美
容液）※2）。本製品には前述のVC-IPの
他に、ビタミンE誘導体（抗酸化作用）
やビタミンA誘導体（パルミチン酸セチルノール）を封入したPLGA
ナノスフェアと美容液を用時変合して
使用する。PLGAナノスフェアは、独自の製造により
水溶性ビタミンC誘導体と増幅アルコールとコンポジッ
ト化しておくことでパウダーとしての保存安定性と美
容液への再分散性を向上させている。本製品の効果・
効果の評価結果の一例を以下に記す。

5.1 機能性化粧品のホワイトニング効果

ヒト由来メラニン産生細胞HMV-IIを用い、機能
性美容液（ナノクリスフェア）のメラニン産生抑制効
果を評価した。このヒト由来メラニン産生細胞に茶葉
含有カフェイン様物質テオフィリン処理※2によってメ
ラニンが増産される。そこで、テオフィリン処理の4
時間前に予め機能性美容液を各種の濃度で投与するこ
とによってメラニン産生に及ぼす影響を検証した例を
図9に示す（撮影：県立広島大学三羽研究室）。テオ
フィリン処理すると細胞が黒褐色を示しており、メラニ
ン産生が確認されたが、機能性美容液の塗布によって
メラニン産生の抑制が観察されており、美容液に配
合したPLGAナノスフェアから塗布されたビタミンが
ヒト由来細胞レベルでのメラニン生成抑制に効果を示
したものと考えられた。

5.2 機能性化粧品のアンチエイジング効果

私たちの皮膚の主としてのシワは数十年の歳月を経て形
成されるので、一般的に、シワ形成剤の効能を短期間で
検証し、製品開発するのにはなかなか容易ではない。三
羽ら※3が独自に開発した表皮シワ人為的形成システム
では加速評価が可能である。

本評価はヒト皮膚片を保存させたまま、細胞を死滅
させない紫外線の照射量を変数的に照射することに
よって短期間で人為的にシワを形成でき、薬剤検体の
添加によるシワ形成防御活性の効力的なスクリーニン
グが可能である。

図10は、ヒト皮膚皮片（55歳女性、耳前部皮膚）
を等分割し変成BraunⅡ型拡散チャンバーで径間培養

NanoCryspherer

図8 機能性化粧品（ナノクリスフェア シリーズ：
ホソフトワミクロン化粧品）

※2テオフィリンはホスピタルステーサー性疾患によって、細
胞内のセカンドマッセンジャーであるcAMP濃度を上昇さ
せ、細胞の増殖および分化を促進する物質で、これにより、
メラニン生成が促進され、シワのメラニン生成が促進され
ると考えられる。
しながら1日2回、UV-Aを3J/cm²を5日間反復照射した後の、皮膚表面のレプリカとその凹凸ラインヒストグラムを示した（撮影：県立広島大学三羽研究室）。

ヒト抽出皮膚片（図10上）にUV-Aを恒時照射すると、深い亀裂を落とすだけの小シワが縦に激しく分布するが、より深い切込み小シワが縦に認められ（図10中央）、そのラインヒストグラムも不規則な形で、皮膚、皮丘を示す凹凸が確認された。一方、UV-A照射前に機能性美容液を皮膚に塗布しておくと、大シワ、小シワの形成はほとんど認められず（図10下）、ラインヒストグラムも比較的規則正しく細い皮膚（キメ）があることより、シワの形成を顕著に抑制していることが明らかとなった。これによりビタミン誘導体がレプトフェア粒子に含まれているため、それが皮膚のトホシ（真皮）まで浸透し、主にシワ形成を促進するUV-A由来の活性酸素を消去した結果と考えられる。

6. ナノDDSを応用した育毛剤の開発

前述した糖尿病患者用インスリン製剤及び高機能スキンケア製品に対するナノDDS技術のさらなる展開の一つとして、新たに育毛・発毛に関する技術を開発した。

6.1 生薬剤PLGAナノフェア

生薬エキス類は安全性が高く、その内の幾つかは剤

図10 紫外線照射に伴うヒト皮膚表面（レプリカ）のシワ形成

図11 漢方生薬の薬理作用
（丸善製薬技術資料に沿ふ）
図12 ヒノキチオール封入PLGAナノスフェアの頭皮浸透性

と/or, 細胞実験では効果があっても皮膚等で汚染された毛穴を有するヒトでは、持立する効能効果を十分に発揮することが困難であったと推定する。

そこでナノ育毛剤を開発するに当たり、PLGAナノスフェア粒子の実際のヒト頭皮への浸透性を評価した。頭部の毛穴を有するヒト供出皮膚片（40歳女性、頭皮部）に、ヒノキチオール封入PLGAナノスフェア分散液をこの対照としてのブランチャールプールで塗布した例を図12に示す（撮影：県立広島大学三羽研究室）。

このでヒノキチオールは着色で示されているが、ナノスフェアに包含して塗布することに、より多量のヒノキチオールが毛穴深部まで浸透していることは明らかで、前述の考察の通りとなった。

PLGAナノスフェア（平均粒子径200nm）を用いることにより、油針分を含んだ層を通過しそれ、毛包の巣まで進むかなら、浸透でき出生の効能効果を大いに発揮することが可能となるものと推定される。

このことから、元来育毛効果を持つ生薬成分が、ナノスフェア粒子に包まれたまま毛包細胞に取り込まれると、PLGAナノスフェアの生薬エキスの滲透性により、細胞内で生薬成分が長時間にわたってゆっくりと放出され、退行期や休止期にある毛根細胞を活性化させ育毛を促すものと考えられた。

そこで、次にこの効果を検証する目的としてマウス（N=5匹、雄、8週齢）での動物実験を実施した。発毛休止期にあるC3Hマウス（毛剃りすると育毛活動が休止期に入る）の胸背下半部の毛をバリカンで皮膚を傷つけたり刺激しないよう刈り取った後、一日後シャープで剃毛した。目に見える引っかかり傷のないマウスを使用し、市販の発毛・育毛剤（A社、B社製薬品）を対照群として発薬封入PLGAナノスフェアの懸濁液を一日1回塗布（20μL/day）し、マウス背頭部皮膚毛を成長期に移行させる能力の多寡を調べた（撮影：県立広島大学三羽研究室）。後布は剃毛部全体を行った。

図13、14に示すように、発布経過日15日目においてPLGAナノスフェアは市販品を大きく上回る、休止期から成長期への著しい毛周期変換活性を示した。
現在、ヒトの頭髪などに対する同様の作用があるかを検証しているが、毛包の基本構造や毛髪成長の基本メカニズムは理解することで類似していること、生薬配合PLGAナノマトリックスは既記の実験結果の通り。ヒト頭髪への効果性に極めて優れていること、C3Hマウスの生長機能を一旦で機能する作用が見られたことから、ヒトに対して良好な効果をもたらすことが十分に予想でき、商品化に取り組んでいくところである。

6. おわりに

著者らの開発したテノ粒子製剤の特徴的な物理化学的手段と化学工学的手段の融合した製法技術によっ
て、皮膚浸透性の低い薬物をPLGAナノスフェア粒子に封入することで、皮膚表面に送達されることが可能とな
ってきた。この基礎技術をスキンケア製剤へ応用し、ホイントニング・アンチエイジングの効能、効果を実
証した。また、PLGAナノスフェアの薬剤送達キャリアとしての有用性を示した。

本ナノスフェア技術の適用は臨床・コンシューマー向けのスキンケア製剤に限らず、発毛・育毛剤技術等への応用も
進んでいる。また、周術的効果ならびに血管を通じて全身作用をもたらす薬剤への応用、さらには遺伝子封
入ベクターとしての効用も進めており、今後の発展が期待されている。

最後に、本資料では記されなかったが、当社では、本
ナノスフェアとは異なるテノ粒子製剤法によって、紫
外線遮断用テノ複合粒子（酸化チタンと酸化セリウムと
酸化亜鉛がシリカ層でコートされた単一複合粒子）の
量産に成功した。これを紫外線カット型ファンデーション
に処方することで、SPF値30.88、PA値8.11（＋
＋＋）といった、紫外線B波からA波までバランスよく遮断できる高機能ファンデーションの製造が可能とな
った。また、従来のように複数層の紫外線遮断用テ
ノ粒子を処方する手間も要らず、粒子・処方設計の幅
が拡大される特徴がある。当所のテノスキンケア製品
関連基礎技術として付記しておく。

参考文献

2) ホソカワミクロロン化製品、ナノクリスフェア、
www.nanocrysphere.com

3) 日経新聞夕刊2005年4月12日「毛髪にナノテク、生薬を微細化、浸透しやすく」等。

5) 山本浩治、倉橋晋、片桐大介、植野敏、竹内洋文、川島嘉明、徳山豊和、辻本広行：“粒子複合化薬用メカノテクノロジーを用いた粉末吸入インスリン製剤用ポリ乳酸グリコール酸ナノコンポジット粒子の設計”，薬剤学, 64(4), 245-253 (2004).

6) 山本浩治、保科良、倉橋晋、竹内洋文、川島嘉明、徳山豊和、辻本広行：“塩薬乾燥式液剤薬品製造

7) 倉橋晋、植野敏、山本浩治、竹内洋文、川島嘉明、徳山豊和、辻本広行: “薬理効果の持続化を目指した
塩薬乾燥式液剤薬品製造法による粉末吸入用粘
膜付着性ナノスフェアコンポジット粒子の設計”，
日本薬剤学会誌第210周年記念大会(2005).

8) 辻本広行、居香樹 “インスリンPLGAナノスフィ
ア（NS）の経脉投与によるビーグル犬血糖値推
移の検討” 粉体工学会 第38期研究発表会要旨集, pp. 55-56 (2005).

— 82 —
9）原香織、辻本広行、川島加明：“インスリン封入PLGAナノスフェアの薬効評価による血糖値推移の検討” 第21回DDS学会（長崎）（2005）。
10）読売新聞朝刊 2005年1月11日2面 及び2005年3月1日夕刊3面 “医小カプセルしわ取り化粧品”等。
11）辻本広行、原香織、C.C.Huang、横山豊和、山谷浩光、竹内洋文、川島嘉明、赤木調香、三羽賀比古“球形を用い封入した乳化グリコール酸共重合体ナノスフェアの経皮浸透性評価”、粉体工学会誌、41 (12) pp.867-875 (2004)。
12）辻本広行、原香織“生体適合性高分子ナノパーティクルの経皮浸透性評価と化粧品への応用”、PHARM TECH JAPAN, 21, 2, 53-64 (2005)。
13）三羽賀比古編著：“美肌・皮膚病とバイオ技術” シーエムシー出版（2003）。
14）横山豊和、辻本広行、川島嘉明“生体適合性高分子PLGAナノコンポジット乳子を応用したDDS技術とその展開”、粉体と工業、Vol.36, No.10, 63-71（2004）。

Caption

Fig.1 Particle design and processing technology of nanosphere for development of DDS inhalation.
Example of preparation of nanocomposite particles by physicochemical and mechanical method.

Fig.2 Pharmacological effect of composite particles with insulin encapsulated PLGA nanosphere administered intratracheally by beagle dogs.

Fig.3 Vitamin C delivery system to epidermis and dermis by VC-IP encapsulated PLGA nanosphere.

Fig.4 Photo and figure of modified Bronaugh diffusion chamber.

Fig.5 Photo of permeability of PLGA nanosphere into human skin biopsies under arm skin of 35-year-old woman.

a) Coumarin6 dispersed in aqueous solution with surfactant.

b) Aqueous dispersion of coumarin6 encapsulated PLGA nanosphere.

Fig.6 Evaluation of permeability of VC-IP encapsulated PLGA nanosphere.
Left: Total vitaminC quantity in human skin biopsies of eyelid 29-year-old woman.
Right: Reduce vitaminC quantity converted from VC-IP in dersis of eyelid 52-year-old woman.

Fig.7 Inhibitory effect of VC-IP encapsulated PLGA nanosphere on DNA double-strand breaks in human skin biopsies of 47-year-old woman by UV irradiation.

Fig.8 Photo of functional cosmetics（NanoCrysphere series: HOAKAWA MICRON COSMETICS）.

Fig.9 Dot plot photo, color density and electron micrograph of melanin extracted from human skin pigmentation HMV-II.

Fig.10 Formulation of wrinkles by UV irradiation.

Fig.11 Hair growth effect of crude drug.

Fig.12 Permeability of Hinokitiol encapsulated PLGA nanosphere into human skin biopsies of scalp of 40-year-old woman.

Fig.13 Pharmacological effect of crude drug encapsulated PLGA nanosphere by C3H mouse.

Fig.14 Regenerative ratio of C3H mouse skin hair.

Table 1 Example of nano-cosmetics.
トナー粒子の革新的な製造技術

(株)ホソカワ粉末技術研究所

木下 直俊，柴田 高志，野城 清

1. はじめに

近年、ナノ粒子やナノレベルでの構成物質などの粉末処理技術が注目され、活発な研究開発が進められている。従来のミクロレベルでのハンドリングされてきた粉末処理プロセスも、ナノサイズからのビルドアップによる検討が進み、従来法に対してその一部を実用的に置き換えるに至っている。

たとえば、典型的な粉末処理プロセスの集合体であるプリンター・複写機のトナーの分野では、ビルダーオフ法の一例であるケミカルトナーの生産が近年大きさおりかけて示している。この一因としては、プリンター・複写機に求められる高品質性・高透明化へアプローチとして、従来の粉末法では限界に近い「シャープな粒子径分布」や、粉末法では現実的な内包不可能なワックス内包は、それぞれの技術と組み合わせることで、その目的を達成することができる。従来の冷結法に代表される「複合粒子化」が求められることもある。

本報では分級する混雑系微粒子の製造方法は、近年活発なナノサイズからの視点ではなく、オーソドックスなミクロレベルからのアプローチによるものである。

本法の特長は、従来の粉砕法ベースの微粒子製造技術に組み立てたものもあるが、従来の粉砕法ベースの微粒子製造技術と比較して、粒子径分布の狭い均一化粒子径を手がかり、かつ平滑な表面性状を有する製品を連続的に生産でき、対象物によっては反応への影響が大きい状態を必須としない点である。また、製法上的特徴を利用して複合粒子の製造が可能である点も、本製法の特長である。

たとえばトナー製造法へ応用した場合、粉砕法ベースの手法で、微粉除去工程が不要なシステムで、ケミカルトナーに類似の平滑な表面を有し、かつワックスを内包した粒子を製造することができる。

以下、当社で扱う樹脂系微粒子の製造例として、複写機・プリンター用「トナー」粒子製造法への応用例を示し、本法を簡潔する。

2. 原理と特長

本法は、以下のような目的を持って開発した。

＜開発の目的＞

- シャープな粒子径分布
- 収率の改善
- (分級微粉の削減と廃棄物の削減)
- 分級過程の可能性
- 微粒子製造と同一工程で複合粒子化
- 場スペース・倉庫エンジニアリング
本法は、図1に示すように、①原料を微細繊維状微粒子中間体に成形、②繊維状中間体を切断し、微粉末を2つの要素で構成され、それらにより望むのサ イズの微粒子を得るものである。従来の三相の粉末を一次元に低次元化する事で、いわゆる微粉末で発生 が避けられない“微粉”成分の発生を極力抑えることを意図したものである。製品サイズは1～2個異なる が、発想は伸縮性を広く、”超微粉遠粒”ともいえる。

繊維状の成形工程において、繊維に均一の強い 手法を採用した場合、図2のように、微粒子体積は往 きLに依存する。すなわち、体積のばらつき（ここ では球根半径Rのばらつき）は、円柱直径Lの1/3乗 となり、微粒子体積の面での均質化が容易になる。た とえば微粉5μmの円柱状粒子の場合、図3のように 円柱断面面積Dと円柱直径Lの比であるL/Dが1と10の場 合においても、周燃算径は高々約2倍にとどまる。

粉砕が一次元であるならば、粉砕後は残り二次元の 形状を保持する。すなわち、微切な成形法によりあ らかじめ所望の構造制御を行えば、粉砕後二次元の 粒子構造が保たれる。

つまり、本法の特長は、従来の粉砕分散法に比し、 より狭い粒子径分布の微粒子を得ることができる、かつ 成形工程を利用した粒子設計が可能となる点にある。

3. プロセス

図4に本法の応用例として、「トナー粒子」を試作 特造する当社の研究設備のフローを示す。成形工程は 図示しないが、深層状態の原料を選択的な口金から押出し、これを高圧空気で延伸する方法を採用した。切断・ 部破プロセスは、いわゆる粉末機とほぼ同様の手法を 採用した。その他、中間体の捕集システム、中間体の 解砕機プロセス、及び捕集プロセスで構成されている。

4. 製品の特徴

図5に製品粒子の比較例（SEM写真）を示す。図 5(a)は本法により得た微粒子の一例である。図5(b) は粉砕分散法（粉砕はジェットミル法による）より 得た微粒子の一例である。いずれも、先のトナー処 方によるポリエステル系樹脂コンパウンドを原料と したものである。また、図5(c)はケミカル（重合）トナー の微粒子（本例は外混剤添加構想と考えられる。写真は 日本ゼオン社ホームページより引用）の例である。
粉砕法によって得た微粒子は、一般的に不定形で、不均一な形状・粒径を有し、表面に著しい凹凸を有する。一方、本法による微粒子は、円柱状の形状を有し、表面も均一で微細な形状である。また、粒子表面（円柱側面）も、クミカルトーニー類似の平滑さを有する。本法による微粒子は、その平均的な表面性状から、たとえば表面の欠け・割れなどの破壊を避けたい場合や、流動性改善・安定化に必要な添加剤の添加量の削減が望まれる場合に有利な特徴と考えられる。

図6に、本法およびジェットミル粉砕法（ホソカワミクロン製カウンタージェットミルAFG）による製品粒子径分布（測定はコールターマルナイルズによる）の一例を示す。本法粒子および比較例である粉砕法粒子には、微粒子化直後・粉砕直後の分級工程を経ない粒子（いずれもサイクロン捕集器）をサンプルとして用いた。

本法のサンプルは、従来の粉砕法に比べ粒子径分布が明らかに狭いことがわかる。例えば、最終工程で微粉末が問題となるアプリケーションでは、最終製品の収率向上に大きく寄与する事が示唆される。これは、製造物の削減、さらにはCO₂排出量の削減につながるものと大いに期待される。

5. トナーへの応用

図示で示した特徴は、トナーへの応用を前提とした場合、全て有益である。

しかし本法の粒子には、形状面からの欠陥・欠点（ハンドリング性、粒子間の粘着等）の存在が懸念された。図2、3に示すように、本法粒子は「球状化率（円柱径（L））」による特徴を有し、短軸：長軸比が大きくなりやすい。それ故、粒子粒子とは異なる粒子性を持つ事を示す事が予想される。
表１ 粒子径分布の測定手段の比較（単位はμm）

<table>
<thead>
<tr>
<th></th>
<th>画像解析式</th>
<th>電気抵抗式</th>
<th>レーザー回折散乱式</th>
<th>空気力学式</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>個数基準</td>
<td>面積基準</td>
<td>個数基準</td>
<td>面積基準</td>
</tr>
<tr>
<td>本粒子（分級なし）</td>
<td>6.34</td>
<td>7.71</td>
<td>5.60</td>
<td>6.18</td>
</tr>
<tr>
<td>松砂トナー（ジェットミル品の分級後）</td>
<td>6.29</td>
<td>7.51</td>
<td>5.24</td>
<td>6.03</td>
</tr>
</tbody>
</table>

画像解析式：シスメックス社製FPIA
電気抵抗式：ベックマンコールタ社製 マルチサイザ
レーザー回折散乱式：日機装社製マイクロトック
空気力学式：ホソカワミクロン製 イースバートアナライザ

そこで、以下本法でトナー処方（樹脂、ワックス、着色剤、電電解剤を含む処方）で作成した粒子のトナーへの応用を念頭におき、形状に着目した本粒子の評価を考察する。

1）粒子径評価

トナーの分野では、種々の目的に応じ、さまざまな粒子径の評価法が用いられている。表１にいくつかの粒子径評価法による本粒子の評価結果を示す。本粒子・粉砕品の各評価法間における評価結果の傾向は、形状効果の出やすい空気力学式を除き類似しており、粒子径は「レーザー回折散乱式＞画像解析式＞電気抵抗式」の関係にある。これは、本粒子・粉砕トナーの粒子径評価結果が同列に並べることを示すものではないが、本法における粒子径評価は、従来の粉砕品の評価と同様のノウハウのもとで評価可能であることが示唆される。

2）外添加処理

トナーの外添加・外加工程は、トナーの性能を大きく左右する。トナーの外添加剤としては一般的に、シリカ、アルミナ、テタニアなどのナノサブミクロン粒子が用いられる。これらの外添加剤には、プリンタ・複写機内でトナー粒子の流動性の改善や安定な帯電性の確保、捻写不良や中でのクリーニング性の付与などの役割がある。

図7に、本粒子（ポリエステルベース、体積平均径67μm）に対して、流動性改善等を目的としたシリカ粒子（2種、公称30nm、12nm）の添加量をSEM写真を示す。外添加操作は、粉砕シーケンス装置（ホソカワミクロン製メカノフォトレジョンAMS-Lab）を用いた。

図7から、円柱表面、破断面とも、シリカ粒子に均一に覆われている様子が観察できる。一見複雑な形状のため外添加操作に特別な対策が必要とも思われたが、実際は表面全体が一斉に粉砕トナーに比較して、外添加操作におけるハンドリングは遅く容易であると考えられる。

表2に、シリカ粒子（2種、公称30nm、12nm）添加試みの本粒子（ポリエステルベース、ワックス分12wt%含有、体積平均径89μm）と、市販のトナー粒子の安定性別の比較を示す。市販品は外添加処方が不明であるため、単純比較は出来ないが、パルク体のハンドリング性は、従来の粉砕トナーに比べて過色が低いことが示唆される。

表2 市販品との比較

<table>
<thead>
<tr>
<th></th>
<th>市販品</th>
<th>本粒子</th>
</tr>
</thead>
<tbody>
<tr>
<td>体積平均径[μm]</td>
<td>8.79</td>
<td>8.95</td>
</tr>
<tr>
<td>安息角[°]</td>
<td>41.5</td>
<td>31.3</td>
</tr>
<tr>
<td>見かけ比重(ゆるむ) [kg/m³]</td>
<td>377</td>
<td>452</td>
</tr>
<tr>
<td>見かけ比重(固め) [kg/m³]</td>
<td>616</td>
<td>669</td>
</tr>
</tbody>
</table>

体積平均径：コールファルマラテクシスによる
その他項目：ネオカワミクロン製バイオフォトスタグラフによる
3）帯電特性
トナーの帯電量は、電子写真プロセスで記録品質を支配する重要な量である。帯電量の評価には、個々のトナー粒子の粒子径と帯電量を測定できる特性をもつ、E-SPART法（エス・コワミクロロン製イースパートアナライザ）を用いた。

今回評価した本粒子（体積平均径 7 µm、シリカ外

前後であり、各種文献の事例と同等である。帯電量分

示した。本例では、逆帯電のない良好な値を

イースパートアナライザによる、個々のトナー粒子

の粒子径と帯電量を用い、さらに図9に示すような、

Surface state theoryより導かれるトナー粒子の帯電

モデルを用いて評価を行なった。

図9に示されるように、粒子径dのトナー粒子群に

について、トナーの比帯電量の逆数である“M/Q”は、

トナー粒子とキャリアの接触確率に影響する値である

キャリアに対するトナーの重量比Ctに対して直線的

の関係にある。一般的には、Ctの増大に伴い、キャ

リアとトナー粒子の接触確率が減少するため、グラフ

は左肩上がりになる。また、粒子径が大きくなるほど

立体障害によくキャリアとの接触確率が減少するた

め、グラフは右側へ移行し、また傾きが大きくなる。

本粒子の評価結果を図10に、また外見処理を含め

て同一処方の粉砕トナーの結果を図11に示す。図中の

トナー粒子直径は、イースパートアナライザより測定

された空気力学径を示す。ここで表1に示したように、

空気力学径については本粒子と粉砕品は同列での比較

が困難である点に注意し、傾向のみの比較を行う。

本粒子は粉砕トナーとはほぼ同様の傾向を示している。

粉砕トナーに対して本粒子は、低湿度域において比

高湿度域のM/Qの差異が大きく、特に大粒子径にお

けるCtに対するM/Qの傾きがやや大きくなる傾向に

ある。

本粒子は、近年普及が進んでいるカラープリンタに

採用例の多い、一成分系の希釈機構により通っている

ものと推察される。

4）複合粒子
ワックス包、コア・シェル化は、トナー粒子の骨

架形成における機能的、ならびに、低湿定着化などの

希釈化においても重要な要素技術である。
図12 二重構造口金・ワックスコア

本法では、微粒子中間体の成形法の工夫により、さまざまな複合粒子を製造できる可能性を秘めている。例えば、成形体の口金部分を二重構造とすることで、コア・シェル構造の近い粒子設計が行える。図12の一例を示す。左図は二重構造の口金を示すイラストである。右図はトナー用材料のシェルに対してワックスのコアを有する中間体の断面写真である。

成形条件を操作することにより、ノズル構造によりずらに内部構造を自己形成することも可能と思われる。図13に本法によりトナー処方（着色剤、ワックス成分を含む12wt％含有）の樹脂で製造された粒子部材のTEM断面写真を示す。写真から、本例では粒子最外側部の添加剤成分が顕著に形成されていることがわかる。

粉末法では、添加剤（有機成形剤、着色剤、ワックス成分）と樹脂の界面において破断し、粉末が選むことが多く、例えばワックスを多く含む処方では、しばしばワックス成分がトナー粒子表面に露出することになり、複雑な内部の構造性に悪影響（帯電不良、キャリア汚染、など）を及ぼす。これに対して、粉末トナーにおけるワックスの高分子化を妨げる一端であり、ケミカルトナーにおけるコア・シェル型トナーが推進される一端である。

本法による内包化粒子は、柱状粒子の半径にのみ被断面を有するものであり、ケミカル法によるコア・シェル型構造に極めて近い粒子設計が可能である。すなわち、本法によれば、従来ケミカルトナーにおいてのみ実現されてきたワックス等の内包化のメリットを、粉末成形法の技術で実現することができる事実が期待される。

ノウハウに属するため詳細は開示できないが、各成分の粘度、相点などの熱特性、表面強力や浸透性、溶解度パラメーターを適切に操作することでより細かな構造設計が可能である。

6. まとめ

樹脂系材料について、微細編維状中間体の成形を経て微粒子を製造する手法を提案した。また、本法のメリットとして、歩留まりの向上や廃棄物削減の可能性を示し、本法で作成した微粒子の特徴について述べた。また、本法をトナー粒子の製造法へ応用した事例を示し、トナーとしての粒子特性を評価した。最後に、本法による複合粒子製造法に関する現状と、今後の展望を述べた。

当社では、本技術をトナー製造にまず展開し、順次他の分野に対して適用していく予定である。

謝辞：

本研究の一部は、文部科学研究費助成金・イノベーション創出事業助成金（特創期の革新技術開発研究研究助成基準）及び環境保全のための革新的粉末材料製造技術の開発の一環として実施された。

参考文献

2）日本ゼオン社ホームページ．
http://www.zeon.co.jp/press/040413.html
3）トナーおよびトナー材料の最新技術, CMC出版, (2000).
7）第57回日本化工学会技術評価会要旨集,日本化工学会 (2004).
Caption

Fig. 1 Preparation process of this method
Fig. 2 Sphere equivalent particle diameter
Fig. 3 Relationship between sphere equivalent particle diameter and L/D (length of cylindrical column in the case that a cylindrical column diameter is 5 μm.)
Fig. 4 Flow diagram of laboratory facilities
Fig. 5 Comparison of particle shape produced by different methods
Fig. 6 Comparison of particle size distributions
Fig. 7 Before and after addition of additives to the particles by this method

Fig. 8 Example of particle charge distribution
Fig. 9 Evaluation method of charging properties
Fig. 10 Charging properties of the particles by this method
Fig. 11 Charging properties of the particles by the grinding method
Fig. 12 Double-structured nozzle to make wax core
Fig. 13 TEM cross-section photo (The part circled with dotted line shows the shape of particles.)

Table 1 Comparison of measurement methods for particle size distribution (unit: μm)
Table 2 Comparison of the properties with a commercial product
ドライマイスタDMRの食品への展開

ホソカワミクロン（株）粉体システム事業本部

1．はじめに

このたび、弊社のドライマイスタが、日本食糧新聞社制定の第8回日本食品優良食品機械賞評価賞を受賞いたしました。食品製造のニーズにあった構造を持っていくと判断されたためで改めて感謝いたします。ここではDMRの特長や食品分野での幅広い支持を受けている理由などを紹介いたします。

2．ドライマイスタの概要

2.1 概要

ドライマイスタは、図1に示すように粉砕・分級機を内蔵した高性能気流乾燥機であり、粉末乾燥製品を効率よく製造することができる機械である。供給された原料は粉砕部において粉砕・分散されるのと同時に熱風に直接接触し、乾燥・脱水が行われる。そして上部の分級部にて粒径以上となり乾燥された粉は、気流とともに集塵機にて回収され製品となる。一方、未乾燥あるいは乾燥が不十分な製品は再度粉砕部へ戻され粉砕・乾燥が繰り返される。このため、最も粒径の抑えられた最適の形となった製品が得られる。標準フローを図2に示す。

2.2 今回受賞に到った特長

(a) 工程の簡略化・装置スペースの削減

乾燥・冷却・粉砕が別工程で単一作業別に検討するケースが多く、その工程の繋ぎのために輸送や貯留の工程をこれに加わるのでシステムは複雑化する。だが乾燥・粉砕・分級が一体となったドライマイスタを適用するとシンプルなシステム・工程が構築でき、これが

Applications of Drymeister to the Food Materials
Powder Processing System Division,
Hosokawa Micron Corporation
連絡先：〒573-1132 大阪府枚方市摂津田北近1-9
Tel 072-855-2307（代表）Fax 072-855-4185

＝91＝
3. 新技術・展開

3.1 過熱蒸気ガス循環システム

次頁の図3にフローの一例を示した。ガス循環フローを組み、原料中の発生蒸気を循環させるシステムである。ドライマイスター出入口温度は100℃以上の条件となるが、下記のような特質があり、食品処理に向く。

(a) ランニングコストの低減（CO₂の削減）

乾燥工程は熱にエネルギーに比し、CO₂の発生が多い単位操作であり、紹介した図2の関係例であると、排気ガス（80℃程）に伴って大きな熱損失をしていけるが、排気ガスは熱エネルギーを利用して、吸入口を熱交換器で予熱してから熱風発生炉に供給する事により、ある程度は熱損失をおさえことができる。しかしながら、ここで紹介する過熱蒸気循環システムは、排気ガスを少量に抑えて循環させるので熱損失が少なく、約20％以上の燃料削減となりCO₂排出量を大きく低減し、地球温暖化防止に有効であると言える。また蒸気は比重が重量ので圧力損失も下げプロ一封運動強化にもつながる。

(b) 排気ガス量が少ない

排気ガス量は発生した蒸発水分蒸気分と集塵機用の払込み吸用の圧縮空気と混ぜ蒸気量の和であるので、間接伝熱加熱型乾燥機に比べても排ガス量は1/2程度で済む。特に臭気や有効物質の問題がある場合では、排ガス処理費を大幅に低減することにつながる。

図2 ドライマイスター標準フロー
温度が適当温度 + α程度なので間接加熱乾燥機に比べて低い点も有利と言える。

まとめると、複数の単位操作を同時に行えるために製造プロセスを簡略化でき、構造がシンプルなために洗浄性に優れ、メンテナンスも容易であるなど食品製造のニーズにあたった構造の機械である。現に食品業界への実績も増えてきている。小麦粉・セルロース・桑の葉・香辛料・食品添加剤などを初め、製造中の残留物の有効利用として乾燥・微粉化することにより、付加価値を高めて有用利用できる新栄・おから・ふすま等がある。販売開始の2000年以降現在年間10台程度の販売実績がある。

図3 過熱蒸気循環システム
(c) 殺菌効果
殺菌効果が高いので殺菌効果が高く、一般生菌やカビ等を除去できないレベルになり大腸菌も除去される。殺菌と乾燥が同時進行できる。（図4参照）
(d) ビタミンや栄養素が損失しない。
特に食品原料など乾燥させる際、原料中のビタミンや栄養素が損失されることが問題にされている。ドライマイスタでは温度制御が数秒から数十秒であるため、栄養素の損失が少なく、残留ビタミンCが多い結果も得ている。健康食品や果汁・絞り果汁・お茶などに適用できる。
(e) その他
過熱蒸気ガス循環システムを採用する事により、系内の酸素濃度は数%まで低く抑えられるので、安全な装置となり条件によっては塩素防止になる。その他にも製品の色合いや香気・風味などが良いと言われている（図5参照）。

3.2 粉末除去装置の付属
分級部近傍のケーシングに排出口を設けることにより、分級ロータによる速心力で粗大粒子が取り出され、異成分除去が可能になる場合がある。この分級性能向上のため、ここに微細な熱風を通じて、分級ロータにより発生した速心力と気流の流れによる微粒の捕集力が高方向に働き、精度の良い粉末分級ができる。食品には粉砕しにくい葉や皮などが含まれるので、これを取り除き粉末選別を安定化させたり、異成分分離ができ、

<table>
<thead>
<tr>
<th>Model</th>
<th>DMR-1BD</th>
<th>DMR-1</th>
<th>DMR-2</th>
<th>DMR-3</th>
<th>DMR-4</th>
<th>DMR-5</th>
<th>DMR-6</th>
<th>DMR-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>全高 [mm] Overall height</td>
<td>1930</td>
<td>1930</td>
<td>2800</td>
<td>3390</td>
<td>4160</td>
<td>4950</td>
<td>5620</td>
<td>6220</td>
</tr>
<tr>
<td>全長 [mm] Overall length</td>
<td>1670</td>
<td>1670</td>
<td>1850</td>
<td>2330</td>
<td>2840</td>
<td>3380</td>
<td>4040</td>
<td>4500</td>
</tr>
<tr>
<td>幅 [mm] Width</td>
<td>900</td>
<td>740</td>
<td>1100</td>
<td>1300</td>
<td>1690</td>
<td>2260</td>
<td>2490</td>
<td>2790</td>
</tr>
<tr>
<td>粉砕部動力 [kW] Power of grinding</td>
<td>5.5〜11</td>
<td>5.5〜11</td>
<td>11〜22</td>
<td>22〜45</td>
<td>45〜90</td>
<td>90〜200</td>
<td>132〜260</td>
<td>180〜355</td>
</tr>
<tr>
<td>分級部動力 [kW] Power of classification</td>
<td>0.75〜1.5</td>
<td>0.75〜1.5</td>
<td>1.5〜3.7</td>
<td>3.7〜7.5</td>
<td>7.5〜15</td>
<td>15〜30</td>
<td>18.5〜37</td>
<td>30〜55</td>
</tr>
<tr>
<td>標準風量 [m³/min] Standard air-volume</td>
<td>18〜25</td>
<td>18〜25</td>
<td>35〜50</td>
<td>70〜100</td>
<td>140〜200</td>
<td>280〜400</td>
<td>420〜600</td>
<td>630〜800</td>
</tr>
<tr>
<td>最高風速 [m/s] Max temperature of hot-air</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>水分蒸発量 [kg/h] Capacity of water evaporation</td>
<td>200</td>
<td>200</td>
<td>390</td>
<td>780</td>
<td>1550</td>
<td>3100</td>
<td>4650</td>
<td>6220</td>
</tr>
<tr>
<td>噴射圧力 [kg] Rough weight</td>
<td>1000</td>
<td>1000</td>
<td>2000</td>
<td>3300</td>
<td>8000</td>
<td>14500</td>
<td>25000</td>
<td>35000</td>
</tr>
</tbody>
</table>

注）水分蒸発量は入口400℃出口100℃の参考値
より水分が安定した品質の製品が得られる。

4. ドライマイスタの仕様

Table 1 にドライマイスタの概要仕様をまとめた。処理風量は18〜800m³/minまでの7型式となっている。

5. まとめ

複雑なシステムもドライマイスタのような単位操作をいくつか併せ持つ機械を導入することによって、コンパクトで効率的なシステムを組むことが可能である。

また新技術の項で紹介した過熱蒸気ガス循環システムも多くの利点をもち、放出ガスの減少による臭気対策、燃料削減によるCO₂排出量の低減、殺菌など食品分野の乾燥システムに大きく貢献できるユニークな乾燥機となっている。
もちろん、食品分野だけでなく、これらの特長はあらゆる産業にも適用・応用できるので弊社のご相談・ご案内いただければ幸いである。

Caption
Fig. 1 Construction of Drymeister.
Fig. 2 Standard flow of Drymeister.
Fig. 3 Super-heated steam drying system.
Fig. 4 Concurrent of sterilization and drying
Fig. 5 Residual nutrition by the drying system.
Table 1 Specifications of Drymeister.
Compact, energy saving, low noise and unique foreign material separation mechanism

省スペース・省エネルギー・低騒音・異成分分離機構

Attrition type ultra fine mill SUPER MICRON MILL model E
摩粉碎型超微粉砕機 スーパーミクロンミルE

＜原理と構造＞

本機は主として摩粉碎機を利用した粉砕機であるスーパーミクロンミルをリニューアルし、粉砕効率と
渦巻性を向上させ、新しい粉砕機として開発されたもので。また、ノズルによる異成分分離機能を搭載し
た粉砕機であり、摩粉碎機を組み合わせることによって、常温粉砕困難とされていた細粒質原料などの粉砕
が可能です。

＜特長＞

□ 幅広いアプリケーションに対応すべく材質をステ
ンレス製とし、さらに耐摩耗処理を施しています。
□ 容易に清掃できる構造（分解洗浄性向上）とし
ており、また機器維持・調査を簡便化したため、
品換え等工程のスピードアップが図れます。
□ 粉砕まり部分を密閉化したため、より閉塞や付
着に強く、多様なシステムが組めるようになりました。
□ 省スペース・省エネルギー化：圧力損失が低いの
で、粉砕機搭載のプロセスで直接サイクロンなど集
塵機に直結できます。
□ 異物（異形・異成分・粗粒子）分離機能を搭載してい
ますので、製品（微粒子側）の品質向上ができ、製品
分布を狭く飛びを抑えることができます。また植物
粉砕では葉と茎あるいは皮と実が分離できます。
□ 摩粉粉碎粉砕機能で給補質も粉状の製品が得られ
ます。球形化などの処理機能としても使用できます。
高速回転対応（100m/s）もできますので適用活用
範囲が広がりました。
□ 低騒音 標準回転時は85dB以下です。
＜適用例＞

・皮付き大豆の粉砕例：皮付き大豆は油分が多く、粉砕中に付着し、湿潤状態で粉砕機が閉塞したり、あるいは皮が粉砕しにくいために脱皮化が難しいとされているが、原料を処理したところ皮がノズル構造により分離され、実が平均14μmの製品が得られました。
・穂倍、ももぎなど植物：茎と葉が分離でき、粉砕効率が向上し、わた状ではなく粉状の製品ができました。

＜仕様＞

<table>
<thead>
<tr>
<th>項目</th>
<th>MODEL</th>
<th>MEC-1</th>
<th>MEC-2</th>
<th>MEC-3</th>
<th>MEC-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>所要力</td>
<td>Power required</td>
<td>7.5</td>
<td>15</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>ファン Fan</td>
<td>[kW]</td>
<td>1.5</td>
<td>2.2</td>
<td>3.7</td>
<td>7.5</td>
</tr>
<tr>
<td>フィールド Fielder [kW]</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>ノズル Nozzle [kW]</td>
<td>0.09</td>
<td>0.09</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>標準風量 Standard air rate</td>
<td>[m³/min]</td>
<td>6</td>
<td>12</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>本機回転数 Mill rotational speed</td>
<td>[rpm]</td>
<td>4480</td>
<td>3550</td>
<td>2700</td>
<td>2000</td>
</tr>
<tr>
<td>低速型 Low speed type</td>
<td>[rpm]</td>
<td>7000</td>
<td>5900</td>
<td>4200</td>
<td>3150</td>
</tr>
<tr>
<td>高速型 High speed type</td>
<td>[rpm]</td>
<td>880</td>
<td>1070</td>
<td>1200</td>
<td>1600</td>
</tr>
<tr>
<td>橋脚寸法 Approximations</td>
<td>[mm]</td>
<td>920</td>
<td>1200</td>
<td>1500</td>
<td>2000</td>
</tr>
<tr>
<td>W1</td>
<td>1400</td>
<td>1700</td>
<td>2100</td>
<td>2650</td>
<td></td>
</tr>
<tr>
<td>W2</td>
<td>1500</td>
<td>1750</td>
<td>2000</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>900</td>
<td>1550</td>
<td>2600</td>
<td>5000</td>
<td></td>
</tr>
</tbody>
</table>

＜連絡先＞

ホソカワミクロン（株）粉体システム事業本部
大阪：〒573-1132 大阪府枚方市港田台1-9 TEL075-855-2221
東京：〒173-0004 東京都板橋区板橋3-9-7 板橋センタービル TEL03-5248-5700

— 96 —
Indirect heating dryer THERMO PROCESSOR C type and F type
間接加熱乾燥機 サーモプロセッサC型・F型

＜リニューアルした内容＞
間接加熱乾燥機の滞留型は一例に乾燥機・反応機・冷却機として使用されるが、ホサカスミクロクには、1軸のトラスディスクと2軸のサーモプロセッサがある。
ブラグフロー性の向上と低コスト化を目的として、ロータ形状をリニューアルした型式C型・F型の2型を追加した。また設計的な再検討も行った。

＜特 長＞
1. ブラグフロー性の向上：減圧乾燥機になると伝熱面積よりも滞留時間を重視し設計する。乾燥の均一性を上げるためには、ブラグフロー性が重要なファクターとなる。今回リニューアルしたF型は円盤状ディスク2軸のタイプである。ブラグフロー性は従来機と比較すると格段に向上し、動力の低減の効果も見られた。対して従来機M型はブラグフロー性よりも混合性を重視しているので、恒度乾燥機として汚泥など流動性の悪い原料も乾燥品を戻すことなく、乾燥できる特徴がある。C型も充分ブラグフロー性は高いが、M型の特徴も受け継ぎ、活用範囲の広い機種である。円盤状に1箇所切り込みのある形をしたロータ形状であり、サーモプロセッサの標準ロータとして使用している。
2. 伝熱面積10％アップ、コストダウン：C型、F型ともコストダウンを目的として開発したので、容積あたりの伝熱面積が大きく伝熱面積基準から従来のM型に比べ10％、N型に比べ20％程度伝熱面積が増加しており、伝熱面積基準の乾燥機の選定であるなら、機械がコンパクトになり、コスト低減できる。
3. 伝熱効率向上：ディスク内のスチーム消費後のドレイン抜きの構造を見直し、節約的になったため、伝熱係数が大きくなった。乾燥品温もジャケット温度との差が2〜5℃まで小さくなり、従来の5〜10℃から格段に伝熱が良くなった。
4. 適性選択の形状を見直し付着が低減した。
<table>
<thead>
<tr>
<th>型番</th>
<th>MTD-26W</th>
<th>MTD-45W</th>
<th>MTD-75W</th>
<th>MTD-110W</th>
<th>MTD-130W</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ m</td>
<td>1.5</td>
<td>1.5</td>
<td>2</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>動力 kW</td>
<td>1.5*2</td>
<td>1.5*2</td>
<td>2.2*2</td>
<td>2.2*2</td>
<td>3.7*2</td>
</tr>
<tr>
<td>回転速度 rpm</td>
<td>36</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>12.5</td>
</tr>
<tr>
<td>伝熱面積 m²</td>
<td>4.89</td>
<td>10.9</td>
<td>14.5</td>
<td>21.9</td>
<td>30.7</td>
</tr>
<tr>
<td>ロータ m³</td>
<td>3.39</td>
<td>8.4</td>
<td>11.2</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>ケーシング m³</td>
<td>1.5</td>
<td>2.5</td>
<td>3.3</td>
<td>4.9</td>
<td>6.7</td>
</tr>
<tr>
<td>有効容量 m³</td>
<td>0.145</td>
<td>0.43</td>
<td>0.568</td>
<td>0.846</td>
<td>1.85</td>
</tr>
<tr>
<td>動力 kW</td>
<td>1.5*2</td>
<td>1.5*2</td>
<td>2.2*2</td>
<td>2.2*2</td>
<td>3.7*2</td>
</tr>
<tr>
<td>回転速度 rpm</td>
<td>36</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>12.5</td>
</tr>
<tr>
<td>伝熱面積 m²</td>
<td>5</td>
<td>9.9</td>
<td>13.2</td>
<td>19.8</td>
<td>32.5</td>
</tr>
<tr>
<td>ロータ m³</td>
<td>3.5</td>
<td>7.4</td>
<td>9.9</td>
<td>14.9</td>
<td>25.8</td>
</tr>
<tr>
<td>ケーシング m³</td>
<td>1.5</td>
<td>2.5</td>
<td>3.3</td>
<td>4.9</td>
<td>6.7</td>
</tr>
<tr>
<td>有効容量 m³</td>
<td>0.145</td>
<td>0.43</td>
<td>0.568</td>
<td>0.846</td>
<td>1.79</td>
</tr>
<tr>
<td>動力 kW</td>
<td>1.5*2</td>
<td>1.5*2</td>
<td>2.2*2</td>
<td>2.2*2</td>
<td>3.7*2</td>
</tr>
<tr>
<td>回転速度 rpm</td>
<td>36</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>12.5</td>
</tr>
<tr>
<td>伝熱面積 m²</td>
<td>5.63</td>
<td>11.38</td>
<td>15.1</td>
<td>22.6</td>
<td>33.9</td>
</tr>
<tr>
<td>ロータ m³</td>
<td>4.18</td>
<td>8.88</td>
<td>11.8</td>
<td>17.7</td>
<td>27.2</td>
</tr>
<tr>
<td>ケーシング m³</td>
<td>1.5</td>
<td>2.5</td>
<td>3.3</td>
<td>4.9</td>
<td>6.7</td>
</tr>
<tr>
<td>有効容量 m³</td>
<td>0.127</td>
<td>0.353</td>
<td>0.474</td>
<td>0.698</td>
<td>1.619</td>
</tr>
</tbody>
</table>

＜遠隔送＞

ホソカワミシロン（株）粉体システム事業本部
大阪：〒573-1132 大阪府枚方市堀田町1-9 TEL 075-855-2221
東京：〒173-0004 東京都板橋区板橋3-9-7 板橋センタービル TEL 03-5248-5700

— 98 —
Compression-tensile characteristic-measuring device for powder bed, improved model

改良された粉体層圧縮引張破断測定装置

Aggrobot AGR-2
アグロボット A G R － 2

粉体層の圧縮引張破断力測定装置「アグロボット A G R － 1」は顕著な圧縮破断性や
粉体層の引張破断強度を一台で測定できる
世界で唯一の測定機として利用されていま
す。

この度、圧縮用のピストン部や引張用
ピック部の位置合わせ、取付機構の改良、
部品品質の向上と加工精度を上げることに
より、測定器間の測定結果の相違（誤差）
をなくし、さらに測定の再現性を向上させた「アグロボット A G R － 2」を販売開始
しました。

また、測定者間の個人差を解消すべく、
試料のタップ充填装置、商品名「タップデ
ンサー」をオプションとして用意しました。
温度コントロール（最大100℃）ができる
オプションも準備しました。

ぜひ、工房工程の歩留まりの評価、製品
の品質性能の評価や各種物性特性（付着
性・圧縮特性・引張破断特性など）をアグ
ロボットで解析し、粉体や製剤の品質改
善・品質保証・トラブル原因の追究などに
活用して下さい。

＜連絡先＞

ホソカワミクロン（株）粉体システム事業本部
大阪　〒573-1132 大阪府枚方市杜屋田町1-9　TEL 075-855-2221
東京　〒173-0004 東京都板橋区板橋3-9-7　板橋センタービル　TEL 03-5248-5700

— 99 —
Enhance better working conditions, shut out dust to office space

作業環境の改善・食堂や休憩室への粉塵をシャットアウト

Air Shower Booth “Sei so ken”

清 層 圏

＜概 要＞

飛散しやすい粉体を扱う現場において、作業服に付着した粉塵を取り除くのは簡単の種でした。一般的なエアーシャワーでは粉塵が十分に除去出来ない上に呼気ゾーンまで粉塵が拡散してしまいます。（エアーシャワー時の室内は乱流状態）

その為、再飛散した粉塵を作業者が吸い込んでいた。

そこで、洗浄に対しては圧縮空気の吹き付け方や方法を工夫し、また除塵については天井から足元への一定方向のダウンフローになるように設計しました。最終的に再付着・作業者の吸入などを問題を一挙に解決しました。

＜用 途＞

□ カーボン・トナー・セラミックス等の化学製造工場
□ 食品製造工場
□ 薬製工場
□ 環境保全・リサイクル施設

＜連絡先＞

ホソカワミクロノ(株)
環境システム事業本部
大 阪：〒573-1132 大阪府枚方市栄塚
田近1-9 TEL 075-855-2021
東 京：〒173-0004 東京都板橋区板橋
3-9-7 板橋センタービル
TEL 03-5248-5720
Highly efficient powder collection, free from contamination
コンタミネーションパルスジェット

SUPER CLEAN PULS JET COLLECTOR
スーパーキリーン パルスジェットコレクタ

＜原理と構造＞
本機のエレメントは超高分子ポリエチレンの単一素材を原料とした単層焼結体で出来た多孔質プラスチック成形体です。捕集されたダストは超高精密な細孔で出来たエレメント表面で捕集され、表面ろ過により安定した捕集性能が得られます。

＜用途＞
トナー、粉体塗料、颜料、各種医薬品、有色原料、高付加価値製品の回収・捕集

＜特長＞
□ コンタミネーションがない
□ コンパクトなシステム
□ 安定した運転が可能
□ メンテナンスが容易
□ 高い捕集効率
<仕様>

<table>
<thead>
<tr>
<th>角型 SCP-S, SCP-STD型（標準タイプ）</th>
<th>サイドリムーバル SCP-C</th>
<th>トップリムーバル SCP-ST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCP-S</td>
<td>SCP-C</td>
</tr>
<tr>
<td></td>
<td>1500/2-150</td>
<td>1300/2-16</td>
</tr>
<tr>
<td></td>
<td>SCP-2</td>
<td>SCP-2</td>
</tr>
<tr>
<td></td>
<td>1500/3-15</td>
<td>1300/3-20</td>
</tr>
<tr>
<td></td>
<td>SCP-5</td>
<td>SCP-5</td>
</tr>
<tr>
<td></td>
<td>1500/7-12</td>
<td>1500/5-16</td>
</tr>
<tr>
<td></td>
<td>SCP-8</td>
<td>SCP-8</td>
</tr>
<tr>
<td></td>
<td>1500/10-14</td>
<td>1500/10-20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>円筒型 SCP-C, SCP-CT型（耐圧型）</th>
<th>サイドリムーバル SCP-C</th>
<th>トップリムーバル SCP-C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCP-C</td>
<td>SCP-C</td>
</tr>
<tr>
<td></td>
<td>1200/3-15</td>
<td>1200/3-20</td>
</tr>
<tr>
<td></td>
<td>SCP-2</td>
<td>SCP-2</td>
</tr>
<tr>
<td></td>
<td>1300/3-15</td>
<td>1300/3-20</td>
</tr>
<tr>
<td></td>
<td>SCP-5</td>
<td>SCP-5</td>
</tr>
<tr>
<td></td>
<td>1300/5-15</td>
<td>1300/5-20</td>
</tr>
<tr>
<td></td>
<td>SCP-8</td>
<td>SCP-8</td>
</tr>
<tr>
<td></td>
<td>1300/7-15</td>
<td>1300/7-20</td>
</tr>
</tbody>
</table>

<追記先>
ホソカワミクロン（株）環境システム事業本部
大 阪：〒573-1132 大阪府枚方市堀町田近1-9 TEL 075-855-2021
東 京：〒173-0004 東京都板橋区板橋3-9-7 板橋センタービル TEL 03-5248-5720

—102—
「ホソカワミクロン化粧品」から
高機能化粧品「Nano Crysphere」シリーズのご案内

Nano Crysphere prime serum
ナノクリスフェア プライムセラム＜美容液＞

【製品説明】

●ビタミンC、E、Aを包み込んだ機能性ナノパウダーを、乳液に混ぜて使う新しいタイプの美容液です。

●ご使用時に、ワンツッチで機能性ナノパウダーと乳液を混合できる、密閉性の高い衛生的な容器を採用し、配合成分の鮮度を新鮮な状態で保っています。

●保湿成分の「レシチン」や「セラミド」を配合し、肌のバリア機能を高めます。

●更にローヤルゼリーエキス、メタソヨグサ種子エキス及び酵母エキスなどの保湿成分が、肌をすこやかに保ちます。

●無香料、着色剤不添加、ノンパラベン、合成界面活性剤及びエタノール不使用です。

【機能性ナノパウダーについて】

機能性ナノパウダーは、生体適合性で、かつ生体内吸収性の高分子3)であるPLGA（乳酸グリコール酸共重合体）から作られたナノ粒子の集合体です。このナノ粒子には、ホソカワ新製品研究所が開発したナノDDS（ナノ粒子を用いた薬物送達システム（Drug Delivery System））技術が応用されています。

すなわち、PLGAナノ粒子には各種ビタミン誘導体が独自製造法によって封入されています。ナノ粒子を美容液と混ぜて肌に散布すると、肌深部まで素早く浸透し、表皮の下部に存在するメラノサイト（真皮上部付近）に送達されます。そこで効率的にナノ粒子内部からビタミン誘導体を長時間に渡り放出し、このビタミン誘導体は肌内部の栄養によって、順次酸化ビタミンCに変換されるので、ビタミン本来の美肌に効果的な生理作用が必要な場所で長時間に渡って期待できるのです。本技術によって、従来のビタミンC薬物の単体使用に比べ、真皮層へのビタミンCの到達量は10倍以上向上しています。（県立広島大学三羽研究室評価）

特に、美肌の天敵である「活性酸素」を消去したり、メラノサイトに働きかけ、シミの原因となる黒色素メラニンの生成を抑制します。また、しわ、たるみの原因

1）PLGAナノ粒子は、生体内成分である乳酸とグリコール酸を原料に作製された高分子のナノ粒子です。肌に浸透すると、肌内への微小な水分で徐々に分解し、体内成分を放出します。そのためこのナノ粒子は体内に蓄積することなく、最終的に身体と化して抗酸化まで分解されて、体外へ排出されます。
透明皮層の細胞層のグリーンを改善して、美肌の再生を促します。

【全成分】

美容成分：水・BG・グリセリン・ペンテレン
リコール・ジグリセリン・PEG-20・ヘキサヒドロ
キシステアリン酸ジベンタエリスリチル・ステアラ
ン・オレオキシエタノール・キサタンガム・水添
レシチン・カルボマート・アルギニン・サッカロミセ
ス溶媒質エキス・トコフェロール・イガイグリコール
ゲン・アセチルステチン・ローヤルゼリー・エキ
ス・ベタイン・ヒアルロン酸Na・ウマスフィンゴ
脂質・PCA-Na・ソルビトール・セリン・加水分解
コラーゲン・ヒアルロン酸・エクス・グリシ
ン・グルタミン酸・アラニン・リシン・トレオニ
ン・プロリン

«プライムセラム使用による美肌効果とモニターアンケート結果»

«まとめ»

"ナノクリシファア プライムセラム"の使用により、色収支数及
び毛穴大が減少した。

"ナノクリシファア プライムセラム"を使用
した40名のモニターのうち、約65％が「良い」
以上と回答し、80％が「満足」と回答した。
NanoCrysphere prime cream
ナノクリスフェア プライムクリーム ＜クリーム＞
内側からうるおい・柔軟性・
ハリ・ツヤをサポート
リッチ感のあるナノエマルジョンタイプのクリームです。
肌に速やかに浸透し、すぐにさらりとした感触に変わります。
このとき、肌の表面でうるおいの膜をつくるので、
与えた水分を閉じ込め、バリア機能をサポート。
肌を内側からふっくらと保ち、ハリとツヤを与えます。

・パッチテスト済み（すべての方に刺激がないというわけではありません）。
・無香料、着色料無添加、ノンパラベン、合成界面活性剤及びエタノール不使用

How to use
顔全体から首すじにかけて、おきなさるようにのばします。

12,600円（税込）

NanoCrysphere prime powder
ナノクリスフェア プライムパウダー ＜粉状美容液＞
肌表面の心地よさは格別。
新感覚のパウダー状美容液
機能性ナノパウダーを存分に活かした、
新発想の粉末美容液です。ナノパウダーが速やかに角質層に浸透。
内包したクリスフェアC及びEオイルが、肌をしっとりと保ちます。
クリーム使用後のべたつき感をおさえますので、さわやかな感触をお楽しみいただけます。皮脂吸着成分が、皮脂による肌あれ・べたつき・てかりを防いで、心地よさを保ちます。

・パッチテスト済み（すべての方に刺激がないというわけではありません）。
・無香料、着色剤無添加、ノンパラベン、合成界面活性剤及びエタノール不使用

How to use
顔全体に軽く乗せるようにしてつけたあと、
肌をなでるようにしてなさいます。

12,600円（税込）

NanoCrysphere anniversary skincare set

18,900円（税込）
ホソカワ粉末技術研究所

ホソカワ粉末技術研究所は、平成14年（2002年）10月に設立された粉末技術、ナノバーティクルテクノロジーを核とする研究開発会社です。弊社は、昭和33年（1958年）9月に設立された相模粉末工学研究所と、新しいナノバーティクルテクノロジーを中心にして、以下のような業務に取り組んでいます。

① 粒子設計・粉末加工に関する受託研究・受託試験
② 独自の研究開発による粉末プロセス機能システムの開発と実用化
③ 機能性ナノ粉末、複合粉末とこれらを用いた高性能製品の開発、製造、販売
④ 粉体受託加工処理
⑤ 受託分析評価

粉末工学研究所は、主に粒子設計・加工技術ならびにそのための処理装置やシステムの開発を中心に、ナノバーティクルテクノロジーを核とするナノ粒子粉末材料やこれらを使った製品開発に重点を置いて研究開発を進めています。

昨年、開発品の実用化をより効率的に行うためにこれからの研究所とセンターを結び、美容科学研究所ならびに燃料電池開発部が独立し、それぞれ目的をもって研究開発ならびにサンプルの製作等が行われています。美容科学研究所では、本誌に紹介されている生体適合性高分子ナノコンポジット技術を応用した機能性化粧品を昨年末より製造販売しています。そして、この技術を用いて、様々な用途向けの受託研究を開始しました。

また、燃料電池開発部では、燃料電池開発部の開発目標に到達し、発電の高効率化を図りながらその実用化を目指し、弊社での標準的な電極用粉末燃料ならびに電極セロの製造、販売を始めました。

さらに、今年は、本誌で紹介されていても従来にな
い革新的なナノ粒子製造技術の開発に成功しました。これにより、製造法を検討し、微細断面のシャープな、特徴のある粒子形状を持つ微粉体製品をより効率で製造することができる技術で、トナーを始め様々な用途への展開が期待されています。

微粒子に関する研究開発、分析評価、受託加工や販売等について、ご要望がありましたら下記まで何なりとご連絡ください。

連絡先：株式会社ホソカワ粉末技術研究所
T E L 072-855-2260
F A X 072-855-4186
URL:http://www.hosokawalab.jp

ナノバーティクルテクノロジー

粉末工学研究所

つくばテストセンター
新刊書

「ナノバーティクル・テクノロジー
・ハンドブック」の予約受付

「ナノバーティクル・テクノロジー」に対する期待度の高まりに応じて、一昨年に刊行した同名の単行本が好評を博していることを受けて、2006年4月に、ホソカワ粉体工学振興財団より、「ナノバーティクル・テクノロジー・ハンドブック」が発行されることになりました。本書は、急速に発展しているナノバーティクル・テクノロジーに関する学術、技術情報を根元体系的に整理して、世界初のハンドブックとして、研究者、技術者に使いやすい形で提供しようとするものです。構成は下記の通り基盤編と応用編からなっており、応用編では実用に使用されている具体的例から、遠い将来の夢に至るまで幅広いトピックスを取り上げています。

構 成

第I編 基 礎
第1章 ナノ粒子の基礎特性と測定法
第2章 ナノ粒子の構造制御
第3章 ナノ粒子およびナノ粒子分散系の特性と変動
第4章 材料のナノ構造制御
第5章 材料ナノ構造の測定法
第6章 ナノ構造系の特性評価法
第7章 ナノ粒子と環境、安全性

第II編 応 用
各分野への応用例（将来の応用例を含む） 45例

体 数：B5版、上製、ケース入り、550頁
出 版：日刊工業新聞社
予定価格（子価）（税込）：25,000円
予約価格（税込）：22,500円

*定価は2006年2月上旬決定
予約通締切：日刊工業新聞社 大阪支社

編集体制
編集長：細川 益男
（ホソカワミクローナ 株式会社 社長、
株式会社ホソカワ粉体技術研究所所長、
ホソカワ粉体工学振興財団理事長）
編集委員長：野村 滋（大阪大学理学部科学研究所所長）

編集幹事：内藤 肇男（大阪大）
編集事務局：佐 藤一郎（日刊工業新聞社）
編集委員：阿部 浩也（大阪大），
 اخت れ 智（金沢大学名誉教授）
大原 正（東北大），
神谷 秀博（東京工業大学），
向井 保雄（大阪府大名誉教授）
多々見健一（横浜国立大学），
福井 武久（ホソカワ粉体研究所），
福森 義信（神戸学院大学），
牧野 本夫（電力中研），
植原 聡秀（大阪大学），
横山 傑（ホソカワ粉体研究所），
河村 泰男（ホソカワ財団）
生体適合性ナノ粒子のDDSへの応用に関する研究受託

（株）ホソカワ粉末技術研究所 美容科学研究所
〒573-1132 大阪府枚方市照田原1-9 Tel 072-855-2231

ホソカワ粉末技術研究所 美容科学研究所では、独自の生体適合性ナノ粒子調製技術と長年培ってきた粒子加工・複合化技術を融合させ、お客様の様々なニーズに応える新しい粒子設計・加工技術をご提案し、お客様から頂いた材料を用いた実サンプルを試作し提供いたします。

【生体適合性ナノ粒子の可能性】

DDS（薬物送達システム）と同、薬物有効性、適度な時間で作用部位に送達させ、時間に対する薬物濃度プロファイルを制御することで、副作用を最小限に抑えつつ、薬物の治療効果を最大限に発揮することが可能な製剤技術です。

当社では、薬物を構成した生体適合性ナノ粒子を用いた、新規ナノDDS製剤の研究受託を行っています。

当社で用いるナノスフェアは、乳酸・グリコール酸共重合体（PLGA）や、乳酸・アスパラギン酸共重合体（PAL）から構成されています。これらは、生体適合性であり、かつ体内内吸収性のため、生体内で水分解し、最終的に水と二酸化炭素にまで分解されま

これらのナノスフェアは、水中での分散状態における平均粒子径で表すと、30〜50nmの微粒子タイプ（写真左）と、200〜250nmの標準タイプ（写真右）の2種類を製造できます。

次頁表のように、粒径サイズの違いにより、粒子の体内動態が大きく異なることが知られており、用途に応じた粒子設計が必要です。

【本ナノスフェア適応の3大メリット】

① 吸収性の向上
（ナノサイズであるため、マイクロ粒子と比較して生体相容への付着性、親和性の増大）

② 放出性的制御
（基材の加水分解に伴う、内包薬物の徐放化と持続効果）

③ 安定性の改善
（薬物（ヘプチド、遺伝子、抗体体、機能性薬剤

生体適合性ナノ粒子のTEM写真と粒度分布
（平均粒子径 385nmの場合）

生体適合性ナノ粒子のSEM写真と粒度分布
（平均粒子径 200nmの場合）
表 高分子ノノスフェアのサイズと薬物キャリアとしての特徴と期待される効果

<table>
<thead>
<tr>
<th>ノノスフェアのサイズ</th>
<th>薬物ノノスフェアのキャリアとしての特徴</th>
<th>効果、応用</th>
</tr>
</thead>
<tbody>
<tr>
<td>サブミクロン（1000nm以下）</td>
<td>粘膜付着性</td>
<td>経腸、経鼻、経口ルートで薬物への着着時間が延長され薬物吸収（生体内利用能）が向上</td>
</tr>
<tr>
<td>200nm以下</td>
<td>経皮浸透性皮膚バリヤ（角質層（70nm）、毛穴（200nm））に抗して、表皮、真皮層まで浸透</td>
<td>皮膚（表皮、真皮）への薬物送達、経皮製剤、機能性化粧品への応用</td>
</tr>
<tr>
<td>100nm以下</td>
<td>脂質膜侵入・マクロファージに対する被食作用（腫瘍、肝臓などの細胞内系組織に被食され、血中から速やかに消失、RES（reticuloendothelial system）効果</td>
<td>同上</td>
</tr>
<tr>
<td>数10～100nm</td>
<td>酸化阻害付近の血管壁の拡大された窓間を通過し酸化組織に留まりやすくなる、EPR（enhanced permeability and retention）効果の発現・細胞膜のエンドサイトーシスを受け、細胞内に取り込まれる</td>
<td>抗がん剤を集中的に酸化部に作用させ治療効果向上</td>
</tr>
<tr>
<td>など）の酸素分解からの抑制</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

【生体適合性ナノ粒子の加工・複合化技術】

ナノ粒子は、比表面積、密度が大きいため、前記のようなメリットを有する反面、実用を目指す場合、ハンドリングが悪く、また2次凝集体を形成しやすいという、取扱い上の難しい問題があります。

その為、最終目的に適応しうる、ナノ粒子の特性能を損ねない、ナノ粒子の複合化処理が不可欠です。

当社では、独自に開発した圧縮、拡散、転動、流動、混合、せん断、分散力といったメカニカルな粒子複合化法のほか、バイオマテリアルによる架橋剤による複合化法などを応用し、ナノ粒子の機能性を保持しつつ、ハンドリングの優れたナノ複合粒子の製造が出来るです。

【生体適合性ナノ粒子の受託研究の例】

お客様ご要望の薬物の投与経路、投与方法に適った、機能性ナノ粒子を設計し、試作サンプルを提供いたしました。

【薬物封入ナノ粒子のDDS吸入製剤への応用例】

インスリン封入ナノ粒子の吸入投与や、ビタミンC誘導体封入ナノ粒子の酸化投与実験においては、本ナノ粒子の薬物送達キャリアとしての有用性が明らかとなっています。

今後、本技術は様々な薬物の応用展開も可能であり、経鼻投与、血管投与用粒子設計も可能です。

【受託研究実績】

(1) NEDO基盤研究開発事業「生体適合性の高分子ナノコンポジット粒子を応用したDDS開発」（平成13～17年）

(2) DPI粉末吸収製剤の設計：糖尿病治療（インスリン）

(3) 伝伝子分子標的製剤設計：遺伝子封入ナノ粒子製薬

(4) 水溶性薬剤、低分子量薬剤（抗がん剤）などを封入
したナノ粒子開発など

【参考文献】
1) 辻本広行, 原名織 “高分子ナノスフェア粒子のコンポジット化と結晶、経皮製剤への応用”, 化学装薬, pp74-80,9 (2005).
受託分析ビジネス

㈱ホソカワ粉体技術研究所 研究開発本部 分析・評価室
〒573-1132 大阪府枚方市湊堤田近1-9　Tel.（072）855-2489

粉体の分析・評価は、ホソカワ粉体技術研究所におまかせください
独自の粉体技術をベースとした高い技術でお答えします

粉体は「魔物」と呼ばれるように、取り扱い方によって様々な顔（特性）に変化します。この特性をコントロールするには、まず粉体特性を把握することが必要となってきます。

当社では、粉体技術一筋90年で得られたノウハウを活用することにより、皆様が抱えている難問に御答え致します。

また、従来の粉体物性評価に加え、昨今のナノテクノロジーの潮流に対応するため、長年の粉体技術をベースに、ナノ粒子の評価技術ならびに評価装置を拡充しております。

是非、この機会にホソカワ粉体技術研究所のノウハウを親身にして頂ければ幸いです。

最信の技術、最新の設備、最進のノウハウでお応えします

①粉体技術90年の蓄積されたノウハウの活用
②高度専門家による短時間で精度の高い分析
③自社独自開発装置の有効活用
④ナノ粒子評価装置の拡充

—112—
① 粉体の基本的な力学特性である、流動性や噴流性の評価が可能です。Dr.Carr提唱の7つの物理値と3つの補助値を得ることができます。例えば、粉体処理装置の設計や粉体のトラブル解決に、また研究現場での材料開発にも役立ちます。

（使用装置：パウダテスタ）

② 粉体や顆粒体の圧縮特性や引張り破断特性の評価が可能です。例えばセラミックスや製剤等の顆粒体層の圧縮崩壊強度測定や様々な粉体の粒子凝聚性を評価できます。

（使用装置：アグロボット）

③ 主にトナーの個々の粒子の帯電量分布と空気力学特性を評価できます。例えば、粒子表面処理の有無により、帯電量の差を評価できます。

（使用装置：イースパートナライザ）

充実のラインナップで粉体からパルクまで、あらゆる諸特性の分析・評価ニーズに対応可能と致します

① 形態観察
・走査型電子顕微鏡
・透過型電子顕微鏡
・レーザ顕微鏡

② 粒径分布測定
・レーザ散乱法
・光学干渉法
・電気顕微鏡
・重力沈降法
・粒子形状評価（FPA）
・空気分散式風分
・ロータブル式風分

③ 比表面積測定
・BET法（1点法、N2）
・ブレン式空気透過法

④ 力学的粉体物性評価
・流動性・噴流性評価（パウダテスタ）
・粉体層圧縮・引張特性評価（アグロボット）

⑤ 粉体物性・構造解析
・X線回折測定
・熱分析（TG-DTA、DSC、TMA）

⑥ 水分測定
・ガスフィッシャー法（微量水分）
・恒温恒湿法

⑦ その他
・粒度分布測定（イースパートナライザ）
・粒子形状評価（ベネットナライザ）
・ゼータ電位測定
・真密度（ピンノメーター法）
・水素イオン濃度測定（pHメータ）
・色差測定
受託加工ビジネス

ホソカワ粉体技術研究所が提供する粉体受託加工並びに受託生産サービスをご存じですか。

受託加工の利点

・アウトソーシングの有効活用 ➡ コストパフォーマンスのUP
・新製品の試作委託 ➡ 新製品開発のスピードUP ➡ ビジネスチャンスの拡大
・多機能パック製品の外形寸法生産 ➡ 自社工場生産品へのスムーズ
・受託生産品の先行市場流通 ➡ 設備投資のタイムロスを最小に ➡ 新市場のスムーズな立ち上げ
・最新鋭ホソカワミクロン機械での受託加工 ➡ ホソカワミクロンの豊富な経験資源の有効化

粉碎加工例

AFG（カウンタージェットミル）

サブミクロンの粉碎、低エネルギー消費、耐摩耗性、そして低騒音

■革命的な低エネルギーを実現！

分級機能を備えた流動層式のジェットミルは、他の従来のジェットミルに比べ、エネルギー消費が低くなりました。

■高品質製品の製造

AFGで製造する製品は、製品の純粋性が優れています。

・モース硬度9.5の超微粉が可能。
・製品粒度：D97 = 2〜200 μm。
・微細な粉が殆ど無く、金属コンタミが極少となる機構を採用しています。

選択粉碎・コーティングが可能

— 114 —
400AFG加工例

<table>
<thead>
<tr>
<th>原料名</th>
<th>製品粒度</th>
<th>処理能力 kg/Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸化アルミニウム</td>
<td>D97=10μm</td>
<td>83</td>
</tr>
<tr>
<td>チタン酸塩</td>
<td>99%<36μm</td>
<td>50%<9μm</td>
</tr>
<tr>
<td>タングステン鉱石</td>
<td>99%<25μm</td>
<td>50%<14μm</td>
</tr>
<tr>
<td>グラファイト</td>
<td>97%<40μm</td>
<td></td>
</tr>
<tr>
<td>モリブデン粉</td>
<td>99%<3μm</td>
<td>50%<2μm</td>
</tr>
<tr>
<td>ネオジウムポリウム</td>
<td>50%<3.5〜4μm（FSSS）</td>
<td>150</td>
</tr>
<tr>
<td>サマリウムコバルト</td>
<td>50%<3〜6.5μm（FSSS）</td>
<td></td>
</tr>
<tr>
<td>銅粉</td>
<td>99%<11μm</td>
<td>50%<4.5μm</td>
</tr>
<tr>
<td>高純度シリコン</td>
<td>99%<10μm</td>
<td>50%<6μm</td>
</tr>
<tr>
<td>カラートナー①</td>
<td>D50=8.5±0.3μm</td>
<td></td>
</tr>
<tr>
<td>カラートナー②</td>
<td>D50=7.3〜7.7μm</td>
<td></td>
</tr>
<tr>
<td>1成分トナー</td>
<td>D50=9.0±0.2μm</td>
<td></td>
</tr>
<tr>
<td>2成分トナー</td>
<td>D50=9.0±0.5μm</td>
<td></td>
</tr>
</tbody>
</table>

※200AFGもご用意しています。スケールアップ比:200AFG:400AFG＝（1：4）

その他の加工機械

- マイクロ ACMパルプライザー-A型
- TSPセパレーター
- ナウターミキサー（真空・耐圧型）
- プリケッティングマシン

加工拠点

- 受託加工本部 関西事業所：八幡加工センター
 〒614-8244 京都府八幡市内里東山川72-1
 TEL：(075) 982-1890 FAX：(075) 971-0678

- 受託加工本部 関東事業所：柏加工センター
 〒277-0873 千葉県柏市中十丁目407-2
 TEL：047-7133-7915 FAX：047-7133-7912

- 受託加工本部 関東事業所：つくば加工センター
 〒300-3264 群馬県つくば市尋常東田2345-1
 TEL：(029) 864-3961 FAX：(029) 864-8822

Mail：tollprocess@hmc.hosokawa.com
粉碎誌投稿要領

1. 原稿の種類
 本誌の原稿は以下の4種類に分類されます。
 1.1 論文
 粉体工学、微粒子工学に関する研究を含めた論文。
 他誌に発表されたもの、英文タイトルと和文、英文要旨をつけて下さい。
 また図表の説明は英語でお願いします。
 1.2 総説、解説
 粉体工学、微粒子工学に関連ある分野の総説的解説的記事。
 各者の意見や見解を盛り込んで入門的に分かりやすく説明したものがあれば歓迎します。
 1.3 テクニカル・レポート
 粉体工学、微粒子工学に関する処理装置、評価装置、あるいは粉体材料やこれとの関連を示した開発、設計、運転、評価、応用等に関する技術的研究成果を
 濃めた内容のもの。
 1.4 その他
 上記以外の原稿。

2. 原稿の編集
 1) 論文につきましては、原則としてアドバイザリーボードのメンバーによって査読を行います。
 2) 原則として年1回発行します。
 3) 拙者を含む希望の場合は編集事務局へご連絡下さい。○実費にてお送り致します。
 4) 掲載後の原稿は原則として返却しません。ただし、ご要望の際は返却致します。
 5) 掲載した原稿に対して、論文には原則として、抜粋50部を譲呈しますが、著者お支払いしません。
 ただし、編集委員会より社外に依頼した依頼原稿については別途お支払いします。

◎連絡先
〒573-1132 仮方市前田町近1-9
(ホソカワ粉体技術研究所内)
“粉碎”誌 編集事務局 (TEL:072-855-2307)
新製品開発・創造に貢献するホソカワミクロン

精密分散・複合化粒子設計装置
ホソカワミクロン
ノビルタ

●型式：NC-130〜1000
●有効容量：0.5〜300L
●動力：5.5〜200kW

マクロ層から精密微細化まで広範囲な粉末混合を短時間で処理できるだけでなく、複合化や、球状化などを可能にした粒子設計・加工装置です。

ナノ粒子複合化装置
ホソカワミクロン
ナノキュラ ラボユニットP型

●型式：NC-LAB-P
●動力：2.2kW
●有効容量：0.1L

機械的エネルギーに第三のエネルギー一つであるプラズマ照射によって、これまでにない新たな機能を発現する新素材の開発用装置です。

磨碎・異成分分離機構

高速磨碎機
ホソカワミクロン
スーパーミクロンE

世界でも稀を見ない、ノズルによる異成分分離機構を搭載した粉砕機であり、磨碎機構を組み合わせる事によって、常温粉砕が困難とされていた細練質原料などの粉砕が可能である。

生薬（植物）の粉砕例
（繊維質であるため粉砕困難な原料の例）

□繊維状物質でも運転が容易
□製品粒径が揃っている
□高品位の製品が得られる（繊維質が少ない）

皮付き大豆の粉砕例
（油分＋皮の繊維質により通常粉砕困難）

□油分の多い原料でも運転が可能
□製品粒径が揃っている
□含有成分の異なる製品（繊維質豊富/油分豊富）が得られる
トータルエンジニアリングで
顧客価値創造に貢献するホソカワミクロン

御相談下さい！

△生産プロセスの効率化
能力向上
省エネルギー
省スペース
長寿命化
メンテナンス性向上

△生産現場・周边の環境向上
作業性向上
クリーン化・安全化
環境負荷低減
異物混入防止

△海外生産への展開
生産拠点の立ち上げ
現地の規制類への対応
輸出入に関する御相談

△新製品機器でチャレンジしたい…
高速磨砕粉砕機
強力エアーシャワー
精密分散・複合化粒子設計装置
乾式複合化粒子設計装置
連続式ナノ粒子複合化装置
粉体層圧縮・引張強度測定装置
スーパーミクロンミルE
清層圏
ノビエタ
メカノフュージョン
ナノキュラ
アグロソットAGR-2

△製品の高付加価値化
市場に対応する製品とは？
高性能・機能付与
新素材開発のバックアップ

粉体システム事業本部
環境システム事業本部
メンテナンスサービス事業本部
海外事業本部
ホソカワ粉体技術研究所

プロセステクノロジーで未来を拓く
ホソカワミクロン株式会社
URL http://www.hosokawamicron.co.jp

■本社 〒573-1132 大阪府枚方市招堤田近1-3
TEL 072-855-2226 FAX 072-855-2410
■東京支店 〒173-0094 東京都板橋区板橋3-9-7（板橋センタービル）
TEL 03-5248-5730 FAX 03-5248-5737
■奈良工場 〒637-0014 奈良県五條市住川町テクノパーク・なら9-3
TEL 07472-6-3800 FAX 07472-6-3670